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The goal of these problems is to solidify our understanding of the techniques
that Weinberg introduces in Chapter 5, including the derivation of the equations
of motion, the relation between the Newtonian and synchronous gauges, and the
adiabatic solutions to the perturbative equations.

PROBLEM 1: EINSTEIN EQUATIONS IN SYNCHRONOUS GAUGE
(15 points)

To see what is involved in the equations of motion, derive the δRjk Einstein
equation in synchronous gauge. You can start with Weinberg’s Eq. (5.1.13), using
also Eqs. (5.1.16) and (5.1.21). Include the scalar functions A and B and also the
tensor function Dij in your expression for hµν . To avoid getting excessively bogged
down in algebra, we will leave out the vector modes. First find the tensor equation
with indices j and k, and then extract the scalar equations for A and B.

One of the equations you will find should almost match Eq. (5.3.29), but you
should actually find that

−16πGa2∂i∂jπ
S = ∂i∂j(A − a2B̈ − 3aȧḂ) ,

in analogy with the Newtonian gauge equation (5.3.20). Weinberg writes the for-
mula without the derivatives. For Fourier modes with �q �= 0, the equations are
equivalent, but below we will be interested in zero wave number modes, so it will
be worth knowing that Eq. (5.3.29) does not apply to them. It is actually obvi-
ous that Eq. (5.3.29) cannot apply to homogeneous solutions, since a homogeneous
value for B makes no contribution to the metric. You will be able to extract a sec-
ond scalar equation from the Rjk equation, which should match one of Weinberg’s
Eqs. (5.3.28)–(5.3.31).

PROBLEM 2: HOMOGENEOUS GAUGE TRANSFORMATIONS IN
SYNCHRONOUS GAUGE (10 points)

In Section (V.4), as the first step in the construction of the adiabatic solutions,
Weinberg constructs the most general gauge transformation in Newtonian gauge
that preserve the conditions for Newtonian gauge and spatial homogeneity. You
are asked to carry out the same exercise in synchronous gauge, finding the most
general gauge transformation of the unperturbed solution that preserves spatial
homogeneity and the synchronous gauge conditions. Show that the most general
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homogeneous solution that can be constructed in this way is described by two
parameters, ε and ωkk, with

A = 2Hε − 2
3
ωkk ,

or something equivalent (depending on your choice of parameterization). B is ir-
relevant for homogeneous solutions, since it has no effect on the metric, but you
should find the expressions for δp, δρ, δu, and πS, in analogy to Eqs. (5.4.8) and
(5.4.9).

(Note that Weinberg constructs his argument based on gauge transformations
described by the four-vector εµ(x), as in Eqs. (5.3.5)–(5.3.7), without using the
scalar/vector/tensor decomposition of Eq. (5.3.13). It is presumably possible to use
the scalar/vector/tensor decomposition, but this decomposition ceases to be unique
when the gauge function εµ(x) does not approach zero at spatial infinity.)

PROBLEM 3: CONSTRUCTION OF ADIABATIC SOLUTIONS (10
points)

Continuing to follow the method Weinberg used for Newtonian gauge, try to
construct the adiabatic solutions in synchronous gauge by allowing the gauge param-
eters of the homogeneous solution to vary sinusoidally with very long wavelengths.
The goal is to construct a solution that obeys the gauge conditions and the con-
straint equations exactly, and obeys the dynamical equations in an approximation
that becomes exact for asymptotically long wavelengths.

Recall that when Weinberg discussed the addition of spatial variations, he had
to consider the constraint equations (5.3.20) and (5.3.21), which are satisfied triv-
ially for homogeneous solutions. Here we have a similar situation with Eqs. (5.3.29)
and (5.3.30), where (5.3.30) should really be written as 8πGa(ρ̄ + p̄)∂i δu = a∂iA.
Show that Eq. (5.3.30) is already satisfied for the homogeneous solution, and find
an expression for B(t) such that Eq. (5.3.29) is satisfied. There are are at least
three ways that you can find B(t). First, you can directly find a function B(t)
that satisfies Eq. (5.3.29). Second, you can use the gauge transformation equations
(5.3.13) to find an expression for εS which assures that ∆F = 0. Or third, you can
come back to this after doing the next problem, in which you will learn to relate
the synchronous gauge adiabatic solutions to the Newtonian gauge solutions.

PROBLEM 4: GAUGE EQUIVALENCE OF THE ADIABATIC SOLU-
TIONS IN SYNCHRONOUS AND NEWTONIAN GAUGES (10
points)

Starting with the adiabatic solutions in either of the two gauges (your choice),
show how to carry out the procedure of Section V.3(C) to obtain the solutions in
the other gauge.


