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PROBLEM 1: A ZERO MASS DENSITY UNIVERSE— GENERAL
RELATIVITY DESCRIPTION (10 points)

In this problem and the next we will explore the connections between special
relativity and general relativity in the way that they describe an empty universe.
In the limit of zero mass density the effects of gravity will vanish, so the general
relativistic description of a Robertson-Walker universe must be equivalent to special
relativity. The goal of these two problems is to see exactly how this happens.
Historically, the empty universe model was proposed by the British astrophysicist
Edward Arthur Milne as an alternative to general relativity, and is usually called
the Milne universe.

These two problems will emphasize the notion that a coordinate system is noth-
ing more than an arbitrary system of designating points in spacetime. A physical
system might therefore look very different in two different coordinate systems, but
the answer to any well-defined physical question must turn out the same regardless
of which coordinate system is used in the calculation.

From the general relativity point of view, the model universe is described by
the Robertson-Walker metric:

ds2 = −c2dt2 + a2(t)
{

dr2

1− Kr2
+ r2

(
dθ2 + sin2 θdφ2

)}
.

The evolution of the model universe is governed by the usual Friedmann equa-
tion, (

ȧ

a

)2

=
8π
3

Gρ − K

a2
,

except that in this case the mass density term is to be set equal to zero.

(a) Since the mass density is zero, it is certainly less than the critical mass density,
so the universe is open. We can then choose K = −1. Derive an explicit
expression for the scale factor a(t).

(b) Suppose that a light pulse is emitted by a comoving source at time te, and is
received by a comoving observer at time to. Find the Doppler shift z.
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(c) Consider a light pulse that leaves the origin at time te, traveling along a null
trajectory, ds2 = 0. Since the pulse is traveling in the radial direction (i.e.,
with dθ = dφ = 0), one has

cdt = a(t)
dr√

1− Kr2
.

Derive a formula for the trajectory r(t) of the light pulse. You may find the
following integral useful: ∫

dr√
1 + r2

= sinh−1 r .

(d) Use these results to express the redshift z in terms of the coordinate r of the
observer. If you have done it right, your answer will be independent of te. (In
the special relativity description that will follow, it will be obvious why the
redshift must be independent of te.)

PROBLEM 2: A ZERO MASS DENSITY UNIVERSE— SPECIAL
RELATIVITY DESCRIPTION (10 points)

In this problem we will describe the same model universe as in the previous
problem, but we will use special relativity directly. We will therefore use an inertial
coordinate system, rather than the comoving system of the previous problem. Please
note, however, that in the usual case in which gravity is significant, there is no
inertial coordinate system. Such a coordinate system exists only in the absence of
gravity.

To distinguish the two systems, we will use primes to denote the inertial co-
ordinates: (t′, x′, y′, z′). Since the problem is spherically symmetric, we will also
introduce polar inertial coordinates (r′, θ′, φ′) which are related to the Cartesian
inertial coordinates by the usual relations:

x′ = r′ sin θ′ cosφ′

y′ = r′ sin θ′ sinφ′

z′ = r′ cos θ′ .

In terms of these polar inertial coordinates, the Minkowski metric of special rela-
tivity can be written as

ds2 = −c2dt′2 + dr′2 + r′2
(
dθ′2 + sin2 θ′dφ′2) .

For purposes of discussion we will introduce a set of comoving observers which
travel along with the matter in the universe, following the Hubble expansion pattern.
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(Although the matter has a negligible mass density, I will assume that enough of it
exists to define a velocity at any point in space.) These trajectories must all meet
at some spacetime point corresponding to the instant of the big bang, and we will
take that spacetime point to be the origin of the coordinate system. Since there
are no forces acting in this model universe, the comoving observers travel on lines
of constant velocity (all emanating from the origin). The model universe is then
confined to the future light-cone of the origin.

(a) The cosmic time variable t used in the previous problem can be defined as the
time measured on the clocks of the comoving observers, starting at the instant
of the big bang. Using this definition and your knowledge of special relativity,
find the value of the cosmic time t for given values of the inertial coordinates—
i.e., find t(t′, r′). [Hint: first find the velocity of a comoving observer who starts
at the origin and reaches the spacetime point (t′, r′, θ′, φ′).]

(b) Let us assume that angular coordinates have the same meaning in the two
coordinate systems, so that θ = θ′ and φ = φ′. We will verify in part (d)
below that this assumption is correct. Using this assumption, find the value
of the comoving radial coordinate r in terms of the inertial coordinates— i.e.,
find r(t′, r′). [Hint: consider an infinitesimal line segment which extends in
the θ-direction, with constant values of t, r, and φ.] Draw a graph of the t′-r′

plane, and sketch in lines of constant t and lines of constant r.

(c) Show that the radial coordinate r of the comoving system is related to the
magnitude of the velocity in the inertial system by

r =
v/c√

1− v2/c2
.

Suppose that a light pulse is emitted at the spatial origin (r′ = 0, t′ =
anything) and is received by another comoving observer who is traveling at
speed v. With what redshift z is the pulse received? Express z as a function
of r, and compare your answer to part (d) of the previous problem.

(d) Show that the metric of the Robertson-Walker comoving coordinate system
can be derived from the Minkowski metric of special relativity, a fact which
completely establishes the equivalence of the two descriptions. To begin, first
write out the set of transformation equations, expressing t′, r′, θ′, and φ′ in
terms of t, r, θ, and φ. (In case your GR is rusty, I offer the following hint:
one way to continue is to consider an infinitesimal line segment described in
the comoving system by its two endpoints: (t, r, θ, φ) and (t + dt, r + dr, θ +
dθ, φ + dφ). Then, to first order in the infinitesimal quantities, calculate the
coordinate differences in the inertial coordinate system: dt′, dr′, dθ′, and dφ′.
Use these quantities and the Minkowski metric to evaluate ds2, and if you have
made no mistakes you will recover the Robertson-Walker metric used in the
previous problem.)
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PROBLEM 3: LUMINOSITY DISTANCE VS. z (10 points)

On p. 42, Weinberg gives the general formula for luminosity distance dL as a
function of redshift z, for a Robertson-Walker universe whose mass density includes
nonrelativistic matter (ΩM ), relativistic matter (ΩR), and vacuum energy (ΩΛ):

dL(z) =
1 + z

H0Ω
1/2
K

sinh

[
Ω1/2

K

∫ 1

1/(1+z)

dx

x2
√
ΩΛ + ΩKx−2 +ΩMx−3 +ΩRx−4

]
,

where for each type of matter Ωi ≡ ρi/ρcr, and ΩK ≡ 1 − ΩΛ − ΩM − ΩR. Derive
this formula, filling in the steps that Weinberg left out. Start from the Friedmann
equation, (

ȧ

a

)2

=
8π
3

Gρ − K

a2
,

and use the dependence on a(t) appropriate to each type of matter ρi.

PROBLEM 4: VARIATION OF REDSHIFT WITH TIME (10 points)

On p. 13, Weinberg shows that the Hubble expansion rate at the time t1, the
time at which the light that we are now receiving with redshift z left its source, is
given by

H(t1) = (1 + z)H0 − dz

dt0
,

where H0 is the present Hubble expansion rate, and t0 is the time of observation.
The derivative dz/dt0 refers to the rate of change of z for a given comoving object.
To get some idea of the relevant numbers, suppose we model our universe as a
matter-dominated flat universe, with a(t) ∝ t2/3. For that model, calculate dz/dt0
as a function of z and H0.

PROBLEM 5: TRANSLATION SYMMETRY IN ROBERTSON-
WALKER UNIVERSES (10 points)

Consider a universe described by a Robertson-Walker metric with K = +1.
Give a transformation of comoving space coordinates that leaves the metric un-
changed, and that takes the point x = (0, 0, r) into a point x = (0, 0, r′), with no
change in the time. (Hint: Consider the three-dimensional space as a surface of
a four-dimensional ball, construct this transformation as a rotation in four dimen-
sions, and then express it in terms of the Robertson-Walker coordinates.) Also give
the corresponding transformation for K = −1.


