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PROBLEM 1: THE MANY COORDINATE SYSTEMS OF DE SITTER
SPACE (20 points)

The Robertson-Walker universe resulting from pure vacuum energy is called de
Sitter space, because it was first described in 1917 by the Dutch astronomer, Willem
de Sitter. As discussed in Weinberg’s book, on pp. 44–45, de Sitter described the
space with a static metric, which fit well with the prevailing view of the time, which
held that the universe was static. De Sitter space can also be described, however,
as a flat (K = 0) Robertson–Walker metric with a(t) ∝ eHt, where H is a constant
related to the vacuum energy density. In fact, it can also be described by both open
and closed Robsertson-Walker metrics. Because of the high degree of symmetry in
de Sitter space, the equal-time surfaces can be chosen in different ways to allow the
many different choices of coordinate systems.

Since inflationary cosmological models go through a phase which is very nearly
de Sitter space, it is useful to pursue the geometry of de Sitter space more thor-
oughly. Probably the most illuminating description of de Sitter space was given
by Erwin Schrödinger in his 1956 book, Expanding Universes. The description
begins with the construction of a (4+1)-dimensional Minkowski space, for which we
take the coordinates as (X, Y, Z, W, V ), with metric

ds2 = dX2 + dY 2 + dZ2 + dW 2 − dV 2 . (1)

(3+1)-dimensional de Sitter space can then be described as the hyperboloid defined
by the constraint equation

X2 + Y 2 + Z2 + W 2 − V 2 = H−2 . (2)

Formulated this way, one can see that de Sitter space has an O(4,1) symmetry
group, with 10 parameters, the same size as the Poincaré group of symmetries of
Minkowski space.

(a) To show that the space described by Eqs. (1) and (2) matches the Robertson–
Walker flat description of de Sitter space, define the coordinates

t = H−1 ln [H(W + V )]

x = e−HtX

y = e−HtY

z = e−HtZ .

(3)
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Find the inverse of this transformation, expressing X , Y , Z, W , and V in terms
of x, y, z, and t, using the constraint of Eq. (2). Find the metric in terms of
the new coordinates, showing that it has the form of a Robertson–Walker flat
universe. Note that the flat coordinate system actually covers only half of the
full de Sitter space, as defined by Eqs. (1) and (2).

(b) To construct a Robertson–Walker closed coordinate system for de Sitter space,
note that the intersection of the hyperboloid with the hypersurface V = V0 =
constant is the surface of a sphere in 4 Euclidean dimensions,

X2 + Y 2 + Z2 + W 2 = V 2
0 + H−2 , (4)

also known as S4. This is exactly the form of the spatial slices of a Robertson–
Walker closed universe. Use this fact to find the Robertson–Walker closed
coordinates r, θ, φ, and t in terms of X , Y , Z, W , and V , and show that the
metric has the claimed form. What part of the full space is covered by these
coordinates?

(c) To construct the Robertson–Walker open coordinate system, note that the
intersection of the hyperboloid with the hypersurface W = W0 = constant
leads to the equation

X2 + Y 2 + Z2 − V 2 = H−2 − W 2
0 , (5)

which for W0 > H−1 is in fact a description of a slice of an open Robertson-
Walker coordinate system. Use this fact to find the Robertson–Walker open
coordinates r, θ, φ, and t in terms of X , Y , Z, W , and V , and show that the
metric has the claimed form. What part of the full space is covered by these
coordinates?

(d) Finally, to construct the static coordinate system that de Sitter first used, let

V =
√

H−2 − r2 sinhHt

W =
√

H−2 − r2 coshHt .
(6)

Fill in the rest of the transformation, and show that the resulting metric has
the form quoted by Weinberg. Does this coordinate system describe the entire
manifold? If not, how would you describe the region that it does cover?

PROBLEM 2: THE TRANSITION FROM DECELERATION TO AC-
CELERATION (Weinberg, Assorted Problem #5, with addition)
(10 points)

Suppose that ΩM = 0.25 and ΩΛ = 0.75, with ΩR negligible. What is the
redshift at which the expansion of the universe stopped accelerating and began to
accelerate. Additional question: If the universe is 13.7 billion years old, how long
ago did the acceleration begin?
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PROBLEM 3: THE VIRIAL THEOREM WITH A HYPOTHETICAL
FORCE LAW (Weinberg, Assorted Problem #5) (10 points)

Suppose that the gravitational potential energy of any pair of galaxies with
separation r decreases as r−n instead of r−1. What combination of the mass of a
virialized cluster of galaxies and the Hubble constant could be calculated from mea-
surements of angular separations and velocity dispersions of its individual galaxies?

PROBLEM 4: TIME OF EMISSION OF LIGHT FROM A VERY DIS-
TANT GALAXY (10 points)

At present, the highest spectroscopically measured redshift is that of a Lyman-
α emitting galaxy discovered at the Subaru Telescope*, with a redshift of z = 6.96.
In this problem you will calculate the age of the universe at the time the light that
we are now receiving was emitted from this galaxy. Calculate first in a simple model
of a flat universe dominated by nonrelativistic matter, with a(t) ∝ t2/3, taking the
present age as 13.7 Gyr. Then calculate it for a realistic model of our universe,
using the following parameters:†

Parameter WMAP 5-Year
Recommended Fit

H0 70.5± 1.3 km·s−1·Mpc−1

Baryonic matter Ωb 0.0456± 0.0015

Dark matter Ωdm 0.228± 0.013

Vacuum energy ΩΛ 0.726± 0.015

Relativistic matter ΩR 8.4× 10−5

The quoted uncertainties are 1 σ. Note, however, that you are not asked to calculate
the uncertainty of your answer. For the realistic model, you will presumably need
to do a numerical integral.

* M. Iye et al., “A galaxy at a redshift z = 6.96,” Nature 443, 186 (2006) [astro-
ph/0609393].

† G. Hinshaw et al., “Five-year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: Data processing, sky maps, and basic results,” Ap. J. Suppl. 180,
225-245 (2009) [arXiv:0803.0732v2 [astro-ph]], Table 7, WMAP+BAO+SN. The
value for ΩR is calculated using a cosmic microwave background temperature
Tγ = 2.725K, including photons and three species of effectively massless neutrinos
with a temperature Tν = (4/11)1/3Tγ . The value for Tγ comes from J.C. Mather
et al., “Calibrator design for the COBE Far-Infrared Absolute Spectrophotometer
(FIRAS),” Ap. J. 512, 511 (1999) [astro-ph/9810373].


