MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Physics 8.952: The Early Universe
March 2, 2009

PROBLEM SET 3

DUE DATE: Wedneday, March 11, 2009, at 5 pm.
ANNOUNCEMENT: There will be no class on Monday, March 9, as I will be flying back from a conference in Grand Cayman.

PROBLEM 1: DISTANCE TO A GALAXY AT $\boldsymbol{z}=\mathbf{6 . 9 6}$ (10 points)

In the previous problem set, you calculated the time of emission for the light arriving now from the most distant galaxy with a spectroscopically measured redshift, which is $z=6.96$. In this problem you are to calculate the distance to the galaxy, using each of the three measures of distance in common use: proper distance, luminosity distance, and angular size distance. Again you should use the WMAP 5-year recommended parameters, with the relativistic matter density based on the COBE 1999 temperature of 2.725 K :

Parameter	WMAP 5-Year Recommended Fit
$\boldsymbol{H}_{\mathbf{0}}$	$70.5 \pm 1.3 \mathrm{~km} \cdot \mathrm{~s}^{-1} \cdot \mathrm{Mpc}^{-1}$
Baryonic matter $\boldsymbol{\Omega}_{\boldsymbol{b}}$	0.0456 ± 0.0015
Dark matter $\boldsymbol{\Omega}_{\mathrm{dm}}$	0.228 ± 0.013
Vacuum energy $\boldsymbol{\Omega}_{\boldsymbol{\Lambda}}$	0.726 ± 0.015
Relativistic matter $\boldsymbol{\Omega}_{\boldsymbol{R}}$	8.4×10^{-5}

PROBLEM 2: VELOCITY OF DISTANT GALAXIES (10 points)

Consider first a flat universe filled with nonrelativistic matter $\left(\Omega_{M}=1, \Omega_{\Lambda}=\right.$ $\Omega_{R}=0$), which is known as the Einstein-de Sitter model. For this model, calculate the recession velocity v as a function of redshift z, where recession velocity v is defined as the present rate of change of the proper distance. At what value of z is the recession velocity $v / c=1$? In such a universe, would it be possible to observe redshifts larger than this value?

For the realistic model described by the parameters in Problem 1, calculate the velocity of recession v of the galaxy at $z=6.96$, expressed as a fraction of the speed of light. You should find that the fraction v / c is bigger than one. Calculate, to at least three significant figures, the value of z for which $v / c=1$.

PROBLEM 3: ANGULAR DIAMETER DISTANCE (10 points)

A peculiar feature of the angular diameter distance is that it is not monotonic. It reaches a maximum value as a function of z, and then becomes smaller for larger z. Intuitively, as one looks further out into space one is also looking backwards in time, so a specific object can look bigger because it is being seen in a smaller universe. For the Einstein-de Sitter model, at what value of z does the angular diameter distance achieve its maximum? In terms of the present value H_{0} of the Hubble expansion rate, what is the maximum value of the angular diameter distance in this model? For the realistic model described by the parameters given in Problem 1 , what is the maximum angular diameter distance, and for what redshift z is it achieved?

PROBLEM 4: SAHA EQUATION (10 points)

Set up your computer to numerically solve the Saha equation. For the parameters given in Problem 1, for what temperature T is the equilibrium ionization fraction X equal to one half? To get an idea of how sensitive this result is to the variation of parameters, calculate the temperature that would give 50% equilibrium ionization (i.e., $X=\frac{1}{2}$) (a) if the mass of the electron were twice as large as its real value, or half as large, with the binding energy fixed; (b) if the binding energy of hydrogen were twice as large, or half as large, as its physical value; (c) if the number density of baryons were 10 times as large, or 10 times smaller, than the WMAP 5-year recommended value.

