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P
rof.

A
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G
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P
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O
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L
E
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S
E
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1
S
O

L
U

T
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N
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P
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O
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L
E
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A

Z
E
R

O
M

A
S
S

D
E
N

S
IT

Y
U

N
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E
R

S
E
—

G
E
N

E
R

A
L

R
E
L
A

T
IV

IT
Y

D
E
S
C

R
IP

T
IO

N
(10

points)

(a)
T
o
find

the
behavior

of
a(t)

w
ith

tim
e
in

a
zero

m
ass

density
universe

set
ρ
=

0
and

K
=

−
1
in

the
Friedm

ann
equation.

T
he

equation
becom

es

(
ȧa )

2

=
1a
2

=⇒
ȧ(t)

2
=

1
.

(1.1)

W
e
choose

the
positive

sign
w
hen

w
e
take

the
square

root
ofthe

above
equation,

since
w
e
believe

the
universe

is
expanding

and
not

contracting.
T
hen

d
a
=

d
t,

so
integration

gives

a(t)
=
t
.

(1.2)

T
he

possible
constant

of
integration

in
the

above
equation

is
fixed

by
the

con-
vention

that
the

zero
of

tim
e
is

chosen
to

be
the

instant
w
hen

a
vanishes.

(b)
W
e
know

the
expression

for
the

cosm
ologicalredshift

is
just

1
+
z
=

a(t
o )

a(t
e )

.
(1.3)

U
sing

a(t)
=
t,
this

gives

z
=

t
o

t
e −

1
.

(1.4)

(c)
W
e
find

the
trajectory

of
the

light
pulse

by
solving

d
t
=
a(t)

d
r

√
1
+
r
2

(1.5)

for
r
as

a
fuction

of
t.

U
sing

a(t)
=
t,
w
e
w
rite

the
above

expression
as

d
tt
=

d
r

√
1
+
r
2

(1.6)
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and
then

integrate
from

the
tim

e
of

em
ission

t
e
to

the
tim

e
of

observation
t
o :

∫
t
o

t
e

d
t ′

t ′
= ∫

r

0

d
r ′

√
1
+
r ′2

=⇒
ln(t

o /
t
e )

=
sinh −

1
r
.

(1.7)

Solving
this

for
r
gives

r
=

sinh
(ln(t

o /
t
e ))

.
(1.8)

R
em

em
bering

that

sinh
θ
=

e
θ−

e −
θ

2
,

(1.9)

the
expression

can
be

rew
ritten

as

r
=

t
o /
t
e −

t
e /
t
o

2
=

(t
o /
t
e )

2−
1

2(t
o /
t
e )

.
(1.10)

(d)
D
efining

y≡
1
+
z
=

a(t
o )

a(t
e )

=
t
o

t
e
,

(1.11)

the
result

from
part

(c)
becom

es

r
=

y
2−

1
2
y

=⇒
y
2−

2
y
r−

1
=

0
,

(1.12)

w
hich

im
plies

that
y
=
r± √

r
2
+

1
.

(1.13)

O
nly

the
positive

root
is

valid,
since

the
negative

root
w
ould

give
a
physically

m
eaningless

negative
value

for
t
o /
t
e .

(Side
com

m
ent:

Spurious
solutions

to
quadratic

equations
often

have
a
physical

interpretation
as

the
solution

to
a

closely
related

physical
problem

,
but

here
that

does
not

seem
to

be
the

case.
T
he

spurious
solution

corresponds
to

a
m
athem

atical
solution

to
E
q.

(1.7)
in

w
hich ∫

d
t ′/

t ′
is

integrated
around

the
singularity

at
t ′
=

0
in

the
com

plex
t ′

plane,so
that

the
integralacquires

an
im

aginary
part±

iπ
.
T
he

integralover
r ′

on
the

right-hand
side

can
acquire

a
m
atching

im
aginary

part
by

distorting
the

contour
of

integration
to

encircle
the

branch
point

of
the

integrand
at

r ′=
i.)

T
hus,

1
+
z
=
r
+ √

r
2
+
1
.

(1.14)

T
he

fact
that

z
depends

only
on

r,
and

not
t
e ,

is
a
consequence

of
the

fact
that

there
is

no
gravity

in
this

problem
.
T
here

is
no

force
acting

on
the

com
oving

observers,
so

they
each

m
ove

at
a
constant

velocity
as

seen
from

the
inertialM

inkow
skicoordinate

system
.
T
hus,

the
redshift

betw
een

any
tw

o
observers

cannot
change

w
ith

tim
e.



8.952
P

R
O

B
L
E

M
S
E

T
1

S
O

L
U

T
IO

N
S
,
S
P

R
IN

G
2009

p
.
3

P
R
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Z
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R

O
M

A
S
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R

S
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—
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E
L
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R
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T
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N
(10

points)

(a)
Since

there
is
no

gravitationalfield,the
com

oving
observers

m
ove

at
a
constant

velocity
in

the
inertial

fram
e
of

reference
(described

by
coordinates

t ′,
r ′,

θ ′,
and

φ ′).
Since

the
com

oving
observers

all
start

at
the

origin
of

the
coordinate

system
,
each

com
oving

observer
travels

on
a
trajectory

r ′=
v
t ′,w

here

v
=
r ′/

t ′
(2.1)

w
illhave

a
different

value
for

different
com

oving
observers.

T
he

cosm
ic

tim
e
t

is
defined

to
be

the
proper

tim
e
as

m
easured

by
com

oving
observers,

so
from

the
point

ofview
of

the
inertialfram

e
t
is
m
easured

on
clocks

that
are

running
slow

ly
by

a
factor

of
γ(v):

t
=

t ′/
γ(v)

=
t ′ √

1−
v
2
=
t ′ √

1−
r ′2

t ′2
,

(2.2)

or

t
= √

t ′2−
r ′2

.
(2.3)

T
hus,

t
is
just

the
L
orentz-invariant

separation
of(t ′,r ′)

from
the

origin.
N
otice

that
since

v
is

constant
the

com
oving

observers
are

also
inertial

observers
in

the
special

relativistic
sense.

(b)
T
he

R
obertson–W

alker
m
etric

for
this

case
is

given
by

d
s
2
=

−
d
t
2
+
t
2 {

d
r
2

1
+
r
2
+
r
2(d

θ
2
+
sin

2
θd
φ

2) }
,

(2.4)

and
the

M
inkow

skim
etric

has
the

form

d
s
2
=

−
d
t ′2

+
d
r ′2

+
r ′2 (d

θ ′2
+

sin
2
θ ′d

φ ′2 )
.

(2.5)

Since
w
e
have

assum
ed

that
θ ′=

θ
and

φ ′=
φ,the

angular
pieces

ofthe
m
etrics

m
atch

only
if
r ′2

=
r
2t

2,
so

r
=

r ′t
=

r ′
√
t ′2−

r ′2
.

(2.6)

T
o
sketch

lines
of

constant
t
in

the
r ′-t ′

plane,
note

that
E
q.

(2.3)
can

be
rew

ritten
as

t ′= √
t
2
+
r ′2

,
(2.7)
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w
hich

for
a
fixed

value
of

t
describes

a
hyperbola.

E
ach

value
of

t
gives

a
different

hyperbola,
and

t
=

0
gives

the
degenerate

hyperbola
t ′

=
|r ′|.

T
o

sketch
lines

of
constant

r,
w
e
can

solve
E
q.(2.6)

for
r ′/

t ′,
finding

v
=

r ′t ′
=

r
√
1
+
r
2
,

(2.8)

or

t ′=
√
1
+
r
2

r
r ′

.
(2.9)

T
hus

the
lines

of
constant

r
are

straight
lines

in
the

r ′-t ′
plane.

N
ote

that
as

r→
±∞

,
the

slope
approaches±

1:

(c)
W
e
have

show
n
in

E
q.(2.8)

thatv
=

r
√
1
+
r
2
,

so
allthat

rem
ains

is
to

calculate
the

redshift.
T
he

redshift
in

specialrelativity
is

given
by

1
+
z
= √

1
+
v

1−
v
.

(2.10)

Substituting
the

previous
expression

for
v,one

finds

1
+
z
= √√√√

1
+

r
√

1
+

r
2

1−
r

√
1
+

r
2

= √
√
1
+
r
2
+
r

√
1
+
r
2−

r
.

(2.11)
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T
he

expression
sim

plifies
dram

atically
if
one

m
ultiplies

the
num

erator
and

de-
nom

inator
by √

√
1
+
r
2
+
r,yielding

1
+
z
= √

( √
r
2
+

1
+
r)( √

r
2
+

1
+
r)

( √
1
+
r
2−

r)( √
1
+
r
2
+
r)

=
r
+ √

1
+
r
2
.

(2.12)

A
s
expected,

this
agrees

w
ith

the
redshift

found
in

part
(d)

of
the

previous
problem

.

(d)
W
e
have

the
follow

ing
transform

ation
equations:

t
= √

t ′2−
r ′2

r
=

r ′
√
t ′2−

r ′2

θ
=
θ ′

φ
=
φ ′

,

(2.13)

w
hich

can
be

inverted
to

give

t ′=
t √

1
+
r
2

r ′=
t
r

θ ′=
θ

φ ′=
φ
.

(2.14)

W
e
thus

find
that,

for
an

infinitesim
al

change
in

the
coordinates,

d
t ′= √

1
+
r
2d
t+

rt
√
1
+
r
2 d

r

d
r ′=

td
r
+
r
d
t

d
θ ′=

d
θ

d
φ ′=

d
φ
.

(2.15)
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F
inally,w

e
substitute

these
expressions

into
the

M
inkow

skim
etric

ofE
q.(2.5):

d
s
2
=

−
d
t ′2

+
d
r ′2

+
r ′2(d

θ ′2
+
sin

2
θ ′d

φ ′2)

=
− [d

t
2(1

+
r
2)+

r
2
t
2

1
+
r
2 d

r
2
+
2
rtd

r
d
t ]

+ [t
2d
r
2
+
r
2d
t
2
+
2
rtd

r
d
t ]

+
t
2
r
2[d

θ
2
+
sin

2
θ
d
φ

2]

=
−
d
t
2
+
t
2 {

d
r
2

1
+
r
2
+
r
2(d

θ
2
+

sin
2
θ
d
φ

2) }
,

(2.16)

w
hich

agrees
w
ith

the
R
obertson–W

alker
m
etric

as
show

n
in

E
q.(2.4).

D
IS

C
U

S
S
IO

N
O

F
T

H
E

Z
E
R

O
M

A
S
S

D
E
N

S
IT

Y
U

N
IV

E
R

S
E
:

T
he

tw
o
problem

s
above

dem
onstrate

how
the

general
relativistic

description
of

cosm
ology

can
reduce

to
special

relativity
w
hen

gravity
is

unim
portant,

but
it

gives
a
m
isleading

picture
of

the
big-bang

singularity
w
hich

is
w
orth

discussing.

F
irst,

w
e
should

keep
in

m
ind

that
the

m
ass

density
of

the
universe

increases
as

w
e
look

backw
ard

in
tim

e.
So,

if
w
e
lived

in
a
universe

w
ith

a
negligible

value
of

Ω
at

the
present

tim
e,

then
such

a
universe

could
be

w
ell-described

at
present

by
the

em
pty

M
ilne

universe.
N
onetheless,

the
universe

w
ould

not
be

described
by

the
M
ilne

universe
back

to
the

singularity,as
at

early
tim

es
the

m
ass

density
w
ould

not
be

negligible.
T
hus,

no
m
atter

how
sm

all
the

value
of

Ω
today,

as
long

as
it

is
nonzero,

the
M
ilne

universe
description

of
t≈

0
can

be
qualitatively

different
from

a
m
ore

realistic
m
odel.

In
particular,the

behavior
a(t)

=
t
(for

K
=

−
1)

differs
from

a
realistic

m
odel

in
tw

o
im

portant
w
ays.

F
irst,

for
this

special
case

the
R
iem

ann
curvature

tensor
vanishes,

as
m
ust

be
the

case
if

the
spacetim

e
is

equivalent
to

M
inkow

ski
space.

O
ne

can
check

the
usualR

obertson–W
alker

equations
to

m
ake

sure
that

this
is
the

case.
Second,

because
the

integral

∫
t

0

d
t ′

a(t ′)

diverges
at

the
low

er
lim

it,
the

particle
horizon

in
the

M
ilne

m
odel

is
infinite.

A
ll

particles
are

visible
from

the
earliest

tim
es,a

fact
w
hich

is
obvious

in
the

M
inkow

ski
space

description,w
here

allcom
oving

w
orldlines

originate
at

the
origin

of
the

coor-
dinate

system
.
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R
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S
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z
(10

points)

T
he

R
obertson–W

alker
m
etric,

d
s
2
=

−
d
t
2
+
a
2(t) {

d
r
2

1−
K
r
2
+
r
2 (d

θ
2
+

sin
2
θd
φ

2 ) }
,

(3.1)

can
be

rew
ritten

by
defining

r
=
S

K
(ξ)≡ 

sin
ξ

if
K

=
1

ξ
if
K

=
0

sinh
ξ

if
K

=
−
1

,
(3.2)

w
hich

gives

d
s
2
=

−
d
t
2
+
a
2(t) {d

ξ
2
+
S

2K
(ξ) (d

θ
2
+

sin
2
θd
φ

2 )}
.

(3.3)

T
o
find

the
energy

flux
hitting

a
detector

at
radialcoordinate

ξ
D
relative

to
a
source,

w
e
need

to
consider

the
totalpow

er
hitting

the
sphere

at
coordinate

radius
ξ
D
:

T
he

pow
er

hitting
the

sphere
is

given
by

P
=

L

(1
+
z)

2
,

(3.4)
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w
here

L
is

the
absolute

lum
inosity.

O
ne

pow
er

of
1
+
z
is

due
to

the
redshifting

of
the

photons,
and

one
pow

er
is

due
to

the
decrease

in
their

rate
of

arrival.
T
he

energy
flux

is
then

�
=

P

A
rea

=
L

4
π
a
2(t

o )S
2K
(ξ

D
)(1

+
z)

2
,

(3.5)

w
here

t
o
is

the
tim

e
of

observation.
T
he

lum
inosity

distance
is

defined
by

d
L (z)

= √
L4
π
�
,

(3.6)

so
the

only
rem

aining
task

is
to

find
ξ
D

in
term

s
of

z
and

other
param

eters.
B
y

setting
d
s
2
=

0
to

follow
the

radiallight
pulses,

w
e
see

that

ξ
D
= ∫

t
o

t
e

d
t ′

a(t ′)
,

(3.7)

w
here

t
e
is

the
tim

e
at

w
hich

the
light

w
as

em
itted.

C
hanging

the
variable

of
integration

to

x≡
a(t)
a(t

o )
=

1
1
+
z(t)

,
(3.8)

w
here

z(t)
is
the

redshift
of

light
em

itted
at

tim
e
t,the

integralcan
be

rew
ritten

as

ξ
D

=
1

a(t
o ) ∫

1

1
/
(1

+
z
)

d
x

x
ẋ
.

(3.9)

ẋ
can

be
evaluated

using
the

Friedm
ann

equation,
supplem

ented
by

the
conditions

that
ρ
Λ
=

const,
ρ

M
∝
a −

3(t),
and

ρ
R
∝
a −

4(t).
So

H
2
= (

ẋx )
2

=
8
π3
G
ρ−

Ka
2

=
H

2o {
ρρ
c
+

Ω
K

x
2 }

=
H

2o {
Ω

Λ
+

Ω
M

x
3

+
Ω

R

x
4
+

Ω
K

x
2 }

,

(3.10)

w
here

Ω
Λ ,

Ω
M
,
and

Ω
R

are
the

contributions
to

Ω
from

vacuum
energy,

nonrel-
ativistic

m
atter,

and
relativistic

m
atter,

respectively,
at

the
tim

e
of

observation,
and

Ω
K

=
−

K

a
2(t

o )
H

2o

.
(3.11)
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A
pplying

E
q.(3.10)

at
t
=
t
o ,

one
sees

that

Ω
Λ
+

Ω
M

+
Ω

R
+

Ω
K

=
1
.

(3.12)

C
om

bining
E
qs.

(3.9)
and

(3.10),and
then

(3.11),

ξ
D

=
1

a(t
o )H

o ∫
1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+

Ω
M
x −

3
+

Ω
R
x −

4
+

Ω
K
x −

2

= √
Ω

K

−
K ∫

1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+

Ω
M
x −

3
+

Ω
R
x −

4
+

Ω
K
x −

2
.

(3.13)

From
E
qs.(3.5)

and
(3.6)

one
has

d
L (z)

=
(1

+
z)

a(t
o )
S

K
(ξ

D
)
,

(3.14)

so
putting

it
all

together
w
e
have

d
L (z)

=
1
+
z

H
o √

−
K

Ω
K

×
S

K {√
Ω

K

−
K ∫

1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+

Ω
M
x −

3
+

Ω
R
x −

4
+

Ω
K
x −

2 }
.

(3.15)

For
K

=
−
1
this

agrees
exactly

w
ith

W
einberg’s

E
q.(1.5.45).

T
he

form
show

n
here

expresses
the

answ
er

in
term

s
of

explicitly
realfunctions

for
K

=
0
and

K
=

1
as

w
ell,w

hile
W
einberg

left
these

cases
to

be
found

by
analytic

continuation
in

Ω
K
.

P
R

O
B

L
E
M

4:
V
A

R
IA

T
IO

N
O

F
R

E
D

S
H

IF
T

W
IT

H
T

IM
E

(10
points)

T
here

are
at

least
tw

o
approaches

to
this

problem
,
one

of
w
hich

is
to

accept
the

form
ula

stated
in

the
problem

,
so

d
z

d
t
0
=

(1
+
z)H

0 −
H
(t

1 )
.

(4.1)

T
hen

the
only

task
is

to
express

H
(t

1 )
in

term
s
of

z
and

H
0 .

t
1
can

be
related

to
the

redshift
by

1
+
z
=

a(t
0 )

a(t
1 )

= (
t
0

t
1 )

2
/
3

,
(4.2)
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so
t
1
=

t
0

(1
+
z)

3
/
2
.

(4.3)

T
hen

H
(t

1 )
=

ȧ(t
1 )

a(t
1 )

=
23
t
1

=
(1

+
z)

3
/
2

23
t
0
=

(1
+
z)

3
/
2
H

0
.

(4.4)

F
inally,using

E
qs.

(4.1)
and

(4.4),

d
z

d
t
0
=

(1
+
z) [1−

√
1
+
z ]

H
0
.

(4.5)

A
second

approach
w
ould

be
to

calculate
z(r,t

0 )
directly,and

then
differentiate

it.
For

definiteness,
let

a(t)
=
B
t
2
/
3
,

(4.6)

w
here

B
is

a
constant.

T
he

tim
e
of

em
ission

t
1
w
illbe

related
to

r
by

r
= ∫

t0

t1

d
t ′

a(t ′)
= ∫

t0

t1

d
t ′

B
t ′2

/
3
=

3B (
t
1
/
3

0
−
t
1
/
3

1 )
,

(4.7)

so

t
1
= (

t
1
/
3

0
−

B
r3 )

3

,
(4.8)

and
then

1
+
z
=

t
2
/
3

0

t
2
/
3

1

=
t
2
/
3

0
(
t
1
/
3

0
−

B
r3 )

2
.

(4.9)

D
ifferentiating

the
expression

above,

d
z

d
t
0
=

23
t −

1
/
3

0
(
t
1
/
3

0
−

B
r3 )

2 −
23

1
(
t
1
/
3

0
−

B
r3 )

3

=
23
t
0 [1

+
z−

(1
+
z)

3
/
2 ]

=
H

0 (1
+
z) [1−

√
1
+
z ]

.

(4.10)
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P
R

O
B

L
E
M

5:
T

R
A

N
S
L
A

T
IO

N
S
Y

M
M

E
T

R
Y

IN
R

O
B

E
R
T

S
O

N
-

W
A

L
K

E
R

U
N

IV
E
R

S
E
S

(10
points)

I
(A

H
G
)
found

the
w
ording

ofthis
problem

am
biguous,because

it
w
as

not
clear

w
hether

it
referred

to
the

usual
polar

coordinate
form

of
the

R
obertson–W

alker
m
etric,

E
q.

(1.1.11),
or

the
quasi-C

artesian
form

of
E
q.

(1.1.9).
For

purposes
of

the
problem

set,
both

interpretations
w
ill

be
accepted.

I
initially

assum
ed

that
W
einberg

w
as

referring
to

the
polar

form
,
since

that
is

the
traditional

form
of

the
R
obertson–W

alker
m
etric,and

because
it
w
as

suggested
by

the
use

ofthe
coordinate

values
r
and

r ′.
In

hindsight,
how

ever,
I
am

sure
that

W
einberg

intended
the

problem
to

be
w
orked

in
the

quasi-C
artesian

coordinates,because
it
is
m
uch

sim
pler

in
that

form
,
and

the
use

of
the

boldface
vector

x
suggests

this
form

.
H
ere

I
w
ill

show
both

solutions,
starting

w
ith

the
polar

coordinate
form

ulation.

T
he

R
obertson–W

alker
closed

universe
can

be
described

sim
ply

by
em

bedding
it

in
one

extra
space

dim
ension,

so
that

it
becom

es
the

three-dim
ensional

surface
of

a
sphere

in
four

E
uclidean

dim
ensions.

W
ithout

loss
of

generality
the

sphere
can

be
taken

as
a
unit

sphere,
w
ith

actualsize
described

by
the

scale
factor,w

hich
m
ultiplies

the
coordinate

dim
ensions.

If
w
e
use

coordinates
(w

,x
,y
,z)

for
the

4D
em

bedding
space,

w
ith

the
physical

subspace
described

by

w
2
+
x

2
+
y
2
+
z
2
=

1
,

(5.1)

then
the

R
obertson–W

alker
polar

coordinates
can

be
described

by

w
= √

1−
r
2

x
=
r
sin

θ
cos

φ

y
=
r
sin

θ
sin

φ

z
=
r
cos

θ
.

(5.2)

It
w
illalso

be
useful

to
define

r
=

sin
ψ
,

(5.3)

w
here

ψ
is

the
angle

of
the

point
(w

,x
,y
,z)

from
the

w
-axis.

T
he

problem
asks

us
to

find
a
coordinate

transform
ation

that
takes

the
point

(0
,0
,r)

into
the

point
(0,0

,r ′).
T
o
sim

plify
the

notation,
I
w
ill

reserve
the

use
of

prim
es

to
indicate

the
coordinate

transform
ation

—
it
w
illbe

described
by

defining
a
prim

ed
coordinate

system
in

term
s
ofan

unprim
ed

one.
I
w
illtherefore

rew
ord

the
originalquestion,seeking

a
coordinate

transform
ation

that
takes

the
point

(0,0
,r

1 )
into

the
point

(0
,0
,r

2 ).

T
he

transform
ation

is
sim

ple
in

term
s
of

the
4D

coordinates,w
here

it
is
just

a
rotation.

D
efining

r
1
=

sin
ψ

1
,

r
2
=

sin
ψ

2
,

(5.4)
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the
desired

coordinate
transform

ation
should

rotate
in

the
w
-z

plane
by

an
angle

α
=

ψ
2 −

ψ
1
.

(5.5)

T
hus,

w
′=

w
cos

α−
z
sin

α

z ′=
z
cos

α
+
w
sin

α

x ′=
x

y ′=
y
,

(5.6)

w
here

sin
α
=

sin
ψ

2
cos

ψ
1 −

sin
ψ

1
cos

ψ
2
=
r
2 √

1−
r
21 −

r
1 √

1−
r
22

cos
α
=

cos
ψ

2
cos

ψ
1
+
sin

ψ
2
sin

ψ
1
= √

1−
r
22 √

1−
r
21
+
r
2
r
1
.

(5.7)

T
he

point
(0,0

,r
1 )

corresponds
to

(w
,x
,y
,z)

=
( √

1−
r
21 ,0

,0
,r

1 ),
and

from
E
qs.

(5.6)
and

(5.7),
one

can
verify

that
this

point
is

m
apped

to
(w

′,z ′,x ′,y ′)
=

( √
1−

r
22 ,0

,0
,r

2 ),
as

intended.

T
he

prim
ed

4D
coordinates

are
related

to
(r ′,θ ′,φ ′)

as
in

E
q.(5.2),so

w
′= √

1−
r ′2

x ′=
r ′

sin
θ ′

cos
φ ′

y ′=
r ′

sin
θ ′

sin
φ ′

z ′=
r ′

cos
θ ′

.

(5.8)

T
herefore,

using
the

first
of

E
qs.(5.6),one

finds
that

√
1−

r ′2
= √

1−
r
2
cos

α−
r
cos

θ
sin

α
,

(5.9)

from
w
hich

one
findsr ′= √

1− [√
1−

r
2
cos

α
−
r
cos

θ
sin

α ]
2

.
(5.10)

Since
x
and

y
are

preserved
by

the
transform

ation,
the

angle
in

the
x-y

plane
is

preserved,
so

φ ′=
φ
.

(5.11)
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T
he

invariance
of

x
and

y
also

im
plies

that
r ′sin

θ ′=
r
sin

θ,so

sin
θ ′=

r
sin

θ
√

1− [ √
1−

r
2
cos

α−
r
cos

θ
sin

α ]
2
.

(5.12)

A
lternatively,one

can
find

an
equation

for
cos

θ ′
by

using
the

z ′
equation:

cos
θ ′=

r
cos

θ
cos

α
+

√
1−

r
2
sin

α
√
1− [ √

1−
r
2
cos

α−
r
cos

θ
sin

α ]
2
.

(5.13)

O
ne

can
verify

that
the

tw
o
expressions

above
are

consistent
w
ith

sin
2
θ ′+

cos
2
θ ′=

1,so
E
q.(5.12)

could
have

been
derived

from
E
q.(5.13).

T
hus,the

boxed
equations

above
define

the
transform

ation,but
only

one
of

E
qs.(5.12)

and
(5.13)

is
needed.

Y
ou

w
ere

not
asked

to
do

so,but
since

the
transform

ation
ofE

qs.(5.10)-(5.13)
is

supposed
to

leave
the

m
etric

invariant,
it

seem
s
appropriate

to
check

explicitly
that

this
is

true.
T
he

calculation
is

very
com

plicated,
how

ever,
so

one
w
ould

not
w
ant

to
approach

it
w
ithout

the
help

of
a
com

puter
algebra

program
.
U
sing

such
help,

I
found

the
follow

ing
partial

derivatives:

∂
r ′

∂
r

=
r [cos

2
α
+ (

√
1−

r
2

r
−

r
√

1−
r
2 )

sin
α
cos

α
cos

θ−
sin

2
α
cos

2
θ ]

√[r
cos

α
+

√
1−

r
2
sin

α
cos

θ ]
2
+

sin
2
α
sin

2
θ

∂
r ′

∂
θ

=
r
sin

α
sin

θ (r
sin

α
cos

θ−
√
1−

r
2
cos

α )
√[r

cos
α
+

√
1−

r
2
sin

α
cos

θ ]
2
+
sin

2
α
sin

2
θ

∂
θ ′

∂
r

=
sin

α
sin

θ
√
1−

r
2 {[r

cos
α
+

√
1−

r
2
sin

α
cos

θ ]
2
+

sin
2
α
sin

2
θ }

∂
θ ′

∂
θ

=
r [2

r
2
cos

2
α
cos

θ
+
r √

1−
r
2
sin

α
cos

α
(cos

2
θ
+

1)+
cos

θ(sin
2
α−

r
2) ]

(r
cos

α
cos

θ
+
√
1−

r
2
sin

α ) {[r
cos

α
+
√
1−

r
2
sin

α
cos

θ ]
2
+

sin
2
α
sin

2
θ }

(5.14)

N
ext

w
e
express

d
r ′

and
d
θ ′

in
term

s
of

the
unprim

ed
quantities:

d
r ′=

∂
r ′

∂
r
d
r
+

∂
r ′

∂
θ
d
θ

d
θ ′=

∂
θ ′

∂
r
d
r
+

∂
θ ′

∂
θ
d
θ

(5.15)
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R
ecalling

that
φ ′

=
φ

and
that

r ′sin
θ ′

=
r
sin

θ,
and

again
m
aking

heavy
use

of
the

com
puter

algebra
program

,one
can

use
E
qs.(5.14)

and
(5.15)

to
show

that
the

spatial
m
etric

d
s
2
=

d
r ′2

1−
r ′2

+
r ′2 (d

θ ′2
+

sin
2
θ ′d

φ ′2 )
(5.16)

can
be

rew
ritten

as

d
s
2
=

d
r
2

1−
r
2
+
r
2 (d

θ
2
+

sin
2
θ
d
φ

2 )
,

(5.17)

w
hich

verifies
that

the
m
etric

is
indeed

invariant
under

the
transform

ation
described

by
E
qs.

(5.10)–(5.13).

For
the

open
universe

case,
one

starts
by

introducing
a
4D

em
bedding

space
(w

,x
,y
,z)

w
ith

a
pseudo-E

uclidean
m
etric

d
s
2
=

d
x

2
+
d
y
2
+

d
z
2−

d
w

2
.

(5.18)

T
he

m
etric

is
ofcourse

equivalent
to

the
M
inkow

skim
etric,but

w
e
should

rem
em

ber
that

w
has

no
physical

connection
to

tim
e.

T
he

R
obertson–W

alker
spatial

slice
is

described
by

the
subspace

satisfying

x
2
+
y
2
+
z
2−

w
2
=

−
1
,

(5.19)

and
the

R
obertson–W

alker
polar

coordinates
are

defined
by

w
= √

1
+
r
2

x
=
r
sin

θ
cos

φ

y
=
r
sin

θ
sin

φ

z
=
r
cos

θ
,

(5.20)

w
here

this
tim

e
w
e
define

r
=

sinh
ψ
.

(5.21)

T
his

tim
e
the

transform
ation

w
ill

be
a
pseudo-rotation

in
the

w
-z

plane,
w
hich

in
the

context
of

the
L
orentz

group
w
ould

be
called

a
boost.

T
hus,

w
′=

w
cosh

α
+
z
sinh

α

z ′=
z
cosh

α
+
w
sinh

α

x ′=
x

y ′=
y
,

(5.22)
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w
here

α
can

be
expressed

in
term

s
of

the
ψ
’s

by
E
q.

(5.5),so

sinh
α
=

sinh
ψ

2
cosh

ψ
1 −

sinh
ψ

1
cosh

ψ
2
=
r
2 √

1
+
r
21 −

r
1 √

1
+
r
22

cosh
α
=

cosh
ψ

2
cosh

ψ
1 −

sinh
ψ

2
sinh

ψ
1
= √

1
+
r
22 √

1
+
r
21 −

r
2
r
1
.

(5.23)

T
his

tim
e

the
point

(0
,0
,r

1 )
corresponds

to
(w

,x
,y
,z)

=
( √

1
+
r
21 ,0

,0
,r

1 ),
and

from
E
qs.

(5.22)
and

(5.23),
one

can
verify

that
this

point
is

m
apped

to
(w

′,z ′,x ′,y ′)
=

( √
1
+
r
22 ,0

,0
,r

2 ),
as

intended.

T
he

prim
ed

4D
coordinates

are
related

to
(r ′,θ ′,φ ′)

as
in

E
q.(5.20),so

w
′= √

1
+
r ′2

x ′=
r ′

sin
θ ′

cos
φ ′

y ′=
r ′

sin
θ ′

sin
φ ′

z ′=
r ′

cos
θ ′

.

(5.24)

T
herefore

√
1
+
r ′2

= √
1
+
r
2
cosh

α
+
r
cos

θ
sinh

α
,

(5.25)

from
w
hich

one
finds

r ′= √[√
1
+
r
2
cosh

α
+
r
cos

θ
sinh

α ]
2−

1
.

(5.26)

A
gain

the
fact

that
x
and

y
are

unchanged
im

plies
that

φ ′=
φ

(5.27)

and
that

r ′sin
θ ′=

r
sin

θ,
so

sin
θ ′=

r
sin

θ
√[ √

1
+
r
2
cosh

α
+
r
cos

θ
sinh

α ]
2−

1
.

(5.28)

A
s
in

the
previous

case,
one

can
use

the
z ′

equation
to

obtain
a
relation

for
cos

θ ′:

cos
θ ′=

r
cos

θ
cosh

α
+

√
1
+
r
2
sinh

α
√[ √

1
+
r
2
cosh

α
+
r
cos

θ
sinh

α ]
2−

1
.

(5.29)
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A
lternatively,the

question
m
ay

have
been

intended
to

refer
to

the
R
obertson–

W
alker

coordinate
system

w
ith

quasi-C
artesian

coordinates,
w
ith

spatial
m
etric

d
s
2
=
a
2 [d !x

2
+
K (!x·d !x )

2

1−
K
!x

2 ]
.

(5.30)

T
hese

coordinates
can

be
em

bedded
in

a
4D

E
uclidean

or
pseudo-E

uclidean
space

(w
,x
,y
,z)

by
adding

the
redundant

coordinate
w
,
given

by

w
= √

1−
K
(x

2
+
y
2
+
z
2)

.
(5.31)

T
he

m
etric

in
the

4D
space

is

d
s
2
=

d
x

2
+
d
y
2
+
d
z
2
+
K

−
1d
w

2
,

(5.32)

and
the

constraint
is

x
2
+
y
2
+
z
2
+
K

−
1w

2
=
K

−
1
,

(5.33)

w
here

K
=

1
for

a
closed

universe
and

K
=

−
1
for

an
open

universe.

C
onsidering

first
the

closed
universe

case
K

=
1,

the
point

(x
,y
,z)

=
(0
,0
,r

1 )
corresponds

to
(w

,x
,y
,z)

=
( √

1−
r
21 ,0

,0
,r

1 ),
and

(0
,0
,r

2 )
corresponds

to
( √

1−
r
22 ,0

,0
,r

2 ).
T
hus,

the
angle

ψ
from

the
w
-axis

is
given

by
r
=

sin
ψ
,
so

the
first

point
is
carried

into
the

second
by

a
rotation

in
the

w
-z

plane
by

an
angle

α
=

ψ
2 −

ψ
1 ,

as
in

E
q.

(5.5).
T
he

rotation
is

given
by

E
q.

(5.6),
so

w
e
can

see
im

m
ediately

that

x ′=
x

y ′=
y
,

(5.34)

and
then

z ′=
z
cos

α
+
w
sin

α

=
z
cos

α
+ √

1−
(x

2
+
y
2
+
z
2)sin

α
.

(5.35)

O
n
can

use
E
qs.(5.34)

and
(5.35)

to
calculate

r ′2
=
x ′2+

y ′2+
z ′2,finding

agreem
ent

w
ith

E
q.(5.10).

R
ecallthat

sin
α
and

cos
α
are

determ
ined

by
r
1
and

r
2
in

E
q.(5.7).

T
his

answ
er

is
m
uch

sim
pler

than
E
qs.(5.10)–(5.13),since

one
is
not

com
pounding

the
com

plications
ofcurved

spaces
w
ith

the
com

plication
ofdescribing

a
translation

in
polar

coordinates.
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For
the

open
universe

case,the
pseudo-rotation

is
again

described
by

E
q.(5.22),

w
here

w
is

determ
ined

by
E
q.

(5.31),w
ith

K
=

−
1.

T
hus,

x ′=
x

y ′=
y

z ′=
z
cosh

α
+ √

1
+
x

2
+
y
2
+
z
2
sinh

α
.

(5.36)


