

 'snuL

 closely related physical problem, but here that does not seem to be the case. quadratic equations often have a physical interpretation as the solution to a meaningless negative value for t_{o} / t_{e}. (Side comment: Spurious solutions to Only the positive root is valid, since the negative root would give a physically

ұечך sə!̣ŋdu! чэ!чм
7[nsə.. әч7 ภuy

$\frac{\left({ }^{2} 7 /{ }^{0} 7\right) Z}{\left[-{ }_{Z}\left({ }^{2} 7 /{ }^{\circ} 7\right)\right.}=\frac{Z}{{ }^{0} 7 /{ }^{2} 7-{ }^{2} 7 /{ }^{\circ} \gamma}=\lambda$

the expression can be rewritten as

$\frac{{ }^{a} 7}{{ }^{o} 7}=\frac{\left({ }^{\circ} 7\right) p}{\left({ }^{\circ} 7\right) b}=z+\mathrm{I} \equiv \kappa$
(ELI)
(zI•I)
(ti•t)
(0I•I)
$(6 \cdot 1)$

(b) The Robertson-Walker metric for this case is given by

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+t^{2}\left\{\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right\},
$$

and the Minkowski metric has the form

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{\prime 2}+\mathrm{d} r^{\prime 2}+r^{\prime 2}\left(\mathrm{~d} \theta^{\prime 2}+\sin ^{2} \theta^{\prime} \mathrm{d} \phi^{\prime 2}\right) .
$$

Since we have assumed that $\theta^{\prime}=\theta$ and $\phi^{\prime}=\phi$, the angular pieces of the metrics
match only if $r^{\prime 2}=r^{2} t^{2}$, so
Ə
 Thus, t is just the Lorentz-invariant separation of $\left(t^{\prime}, r^{\prime}\right)$ from the origin. Notice
$(\& \cdot z) \quad{ }_{{ }_{2}, ~},{ }_{z_{1}, t} \Lambda=7$
$\%$ slowly by a factor of $\gamma(v)$:

RELATIVITY DESCRIPTION (10 points)

8.952 PROBLEM SET 1 SOLUTIONS, SPRING 2009

Thus the lines of constant r are straight lines in the $r^{\prime}-t^{\prime}$ plane. Note that as
$r \rightarrow \pm \infty$, the slope approaches ± 1 :
. 10
sketch lines of constant r, we can solve Eq. (2.6) for r^{\prime} / t^{\prime}, finding

O
$(7 \cdot \varepsilon)$
integration to
where t_{e} is the time at which the light was emitted. Changing the variable of

that $\rho_{\Lambda}=$ const, $\rho_{M} \propto a^{-3}(t)$, and $\rho_{R} \propto a^{-4}(t)$. So
\dot{x} can be evaluated using the Friedmann equation, supplemented by the conditions

$\xi_{D}=\frac{1}{a\left(t_{o}\right)} \int_{1 /(1+z)}^{1} \frac{\mathrm{~d} x}{x \dot{x}}$
$\frac{(7) z+\mathrm{I}}{\mathrm{I}}=\frac{\left({ }^{\circ} \neq\right) p}{(7) b} \equiv x$

$(8 \cdot \varepsilon)$
 where $\Omega_{\Lambda}, \Omega_{M}$, and Ω_{R} are the contributions to Ω from vacuum energy, nonrel$\left\{\frac{z^{x}}{y^{x} \mho}\right.$

$(L I \subset)$

($0 \mathrm{I}^{\circ} \mathrm{E}$)
$(6 \cdot \mathcal{E})$
setting $\mathrm{d} s^{2}=0$ to follow the radial light pulses, we see that

$\frac{\gamma \mu T}{T} \Lambda=(z)^{T} p$

T

energy flux is then

8.952 PROBLEM SET 1 SOLUTIONS, SPRING 2009
$8 \cdot d$

the formula stated in the problem, so

 here expresses the answer in terms of explicitly real functions for $K=0$ and $K=1$

(gİ¢)			

$$
d_{L}(z)=(1+z) a\left(t_{o}\right) S_{K}\left(\xi_{D}\right),
$$

so putting it all together we have
From Eqs. (3.5) and (3.6) one has 6007 פNIUCS 'SNOILOTOS I LAS INGTGOYd ZS6'8

.8u!̣uyəの 'ио!̣ұеұо.

 $\cdot\left(z_{l}{ }^{6} 0{ }^{\text {‘ }} 0\right)$ ұu!̣od әчд оұи!

 - $\downarrow \mathrm{U} \mathrm{s}=\ell$

$(\S \cdot \mathrm{G})$

әuழəp of [nјəsn əq osโe II! M \ddagger I θ sOつ $l=z$ $y=r \sin \theta \sin \phi$ ϕ soว θ UIS $l=x$ $z^{l-I} \Lambda=m$
then the Robertson-Walker polar coordinates can be described by ${ }^{\prime} \mathrm{I}={ }_{z^{z}}+{ }_{{ }^{2}} k+{ }_{z} x+{ }_{{ }^{2}} n$ embedding space, with the physical subspace described by multiplies the coordinate dimensions. If we use coordinates (w, x, y, z) for the 4 D
 of a sphere in four Euclidean dimensions. Without loss of generality the sphere

 show both solutions, starting with the polar coordinate formulation.

 Robertson-Walker metric, and because it was suggested by the use of the coordinate

 metric, Eq. (1.1.11), or the quasi-Cartesian form of Eq. (1.1.9). For purposes of whether it referred to the usual polar coordinate form of the Robertson-Walker I (AHG) found the wording of this problem ambiguous, because it was not clear WALKER UNIVERSES (10 points) PROBLEM 5: TRANSLATION SYMMETRY IN ROBERTSON-

os ' θ u!̣s $\iota=, \theta$ u!̣s , ι деч рие Again the fact that x and y are unchanged implies that

Therefore
from which
Therefore The primed 4D coordinates are related to $\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ as in Eq. (5.20), so

$$
\begin{aligned} w^{\prime} & =\sqrt{1+r^{\prime 2}} \\ x^{\prime} & =r^{\prime} \sin \theta^{\prime} \cos \phi^{\prime} \\ y^{\prime} & =r^{\prime} \sin \theta^{\prime} \sin \phi^{\prime}\end{aligned}
$$

where α can be expressed in terms of the ψ 's by Eq. (5.5), so

p. 15
in polar coordinates.
the complications of curved spaces with the complication of describing a translation This answer is much simpler than Eqs. (5.10)-(5.13), since one is not compounding with Eq. (5.10). Recall that $\sin \alpha$ and $\cos \alpha$ are determined by r_{1} and r_{2} in Eq. (5.7). On can use Eqs. (5.34) and (5.35) to calculate $r^{\prime 2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}$, finding agreement - $\boldsymbol{\operatorname { u I T S }} \underline{\left({ }_{z} z+{ }_{7} h+{ }_{z} x\right)-\mathrm{I}} \Lambda+o \operatorname{soo} z=$ -

$z^{\prime}=z \cos \alpha+w \sin \alpha$
and then immediately that $\alpha=\psi_{2}-\psi_{1}$, as in Eq. (5.5). The rotation is given by Eq. (5.6), so we can see
 to $\left(\sqrt{1-r_{2}^{2}}, 0,0, r_{2}\right)$. Thus, the angle ψ from the w-axis is given by $r=\sin \psi$, so

Considering first the closed universe case $K=1$, the point $(x, y, z)=$

s! qu!̣⿺廴ұsuoo әч7 рие
$d s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}+K^{-1} \mathrm{~d} w^{2}$,
The metric in the 4D space is
$\cdot\left({ }_{z} z+{ }_{z} \kappa+{ }_{z} x\right) Y-\mathrm{I} \rho=m$
These coordinates can be embedded in a 4D Euclidean or pseudo-Euclidean space
(w, x, y, z) by adding the redundant coordinate w, given by

