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PROBLEM SET 2 SOLUTIONS

PROBLEM 1: THE MANY COORDINATE SYSTEMS OF DE SITTER
SPACE (20 points)∗

(a) The (x, y, z, t) coordinate system is related to the global (V,W,X, Y, Z) system
by the equations

t = H−1 ln [H(W + V )]

x = e−HtX

y = e−HtY

z = e−HtZ .

(1.1)

The first of these equations implies that

W + V = H−1eHt , (1.2)

which then implies that the constraint equation

X2 + Y 2 + Z2 +W 2 − V 2 = X2 + Y 2 + Z2 + (W + V )(W − V ) = H−2 (1.3)

can be rewritten as

e2Ht(x2 + y2 + z2) +H−1eHt(W − V ) = H−2 , (1.4)

implying
W − V = H−1e−Ht −HeHt(x2 + y2 + z2) . (1.5)

Taking the sum and difference of Eqs. (1.2) and (1.5),

W = H−1 coshHt− 1
2
HeHt(x2 + y2 + z2)

V = H−1 sinhHt+
1
2
HeHt(x2 + y2 + z2) .

(1.6)

The remaining equations for the inverse transformation are

X = eHtx

Y = eHty

Z = eHtz .

(1.7)
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The metric

ds2 = dX2 + dY 2 + dZ2 + dW 2 − dV 2

= dX2 + dY 2 + dZ2 + (dW + dV )(dW − dV )
(1.8)

can then be rewritten by using

dX = eHt(dx+Hxdt)

dY = eHt(dy +Hydt)

dZ = eHt(dz +Hzdt)

dW + dV = eHtdt

dW − dV = − [
eHtH2(x2 + y2 + z2) + e−Ht

]
dt

− 2eHtH(xdx+ ydy + zdz) .

(1.9)

By combining Eqs. (1.8) and (1.9), one finds

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) , (1.10)

which is exactly the flat Robertson-Walker metric that we are seeking. Only
half of the full space is covered, because Eq. (1.2) implies that W + V > 0 .

(b) As the problem explained, for a fixed value of V = V0 the space is a 4-sphere
of radius

a =
√
V 2

0 +H−2 , (1.11)

since
X2 + Y 2 + Z2 +W 2 = a2 = V 2

0 +H−2 . (1.12)

If we wish to put Robertson–Walker closed universe coordinates on this sphere,
with K = 1, then r should be a dimensionless coordinate ranging from 0 to 1.
This can be arranged by choosing

X = a r sin θ cosφ

Y = a r sin θ sinφ

Z = a r cos θ

W = a
√
1− r2 .

(1.13)
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More compactly, we can define a 3-vector X, with Xi ≡ (X, Y, Z) as i runs
from 1 to 3, so then

X = a r n̂(θ, φ)

W = a
√

1− r2 ,
(1.14)

where
n̂1(θ, φ) = sin θ cosφ

n̂2(θ, φ) = sin θ sinφ

n̂3(θ, φ) = cos θ .

(1.15)

We can check that we have the right metric on the 4-sphere by calculating the
relevant differentials while holding V fixed. Then

dX = a n̂dr + a r dn̂

dW = − a√
1− r2

r dr ,
(1.16)

and

ds2 = dX2 + dW 2

= a2 dr2 + 2a2 r dr n̂ · dn̂ + a2 r2 dn̂2 +
a2

1− r2
r2 dr2

= a2

[
dr2

1− r2
+ r2dΩ

]
,

(1.17)

where
dΩ = dn̂2 = dθ2 + sin2 θ dφ2 , (1.18)

and I used the fact that n̂ · dn̂ = 0. This is the metric that we wanted. To get
the full spacetime metric, we allow V to vary as well, with

a =
√
V 2 +H−2 , da =

V dV
a

. (1.19)

Then
dX = a n̂dr + a r dn̂ +

r n̂

a
V dV

dW = − a√
1− r2

r dr +
√
1− r2

a
V dV ,

(1.19)

and after some algebra

ds2 = dX2 + dW 2 − dV 2

= a2

[
dr2

1− r2
+ r2dΩ

]
− dV 2

H2V 2 + 1
.

(1.20)
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This will match the closed Robertson-Walker form that we are looking for if

dt =
dV√

H2V 2 + 1
, (1.21)

which can be integrated to give

t = H−1 sinh−1(HV ) . (1.22)

So
V = H−1 sinhHt , (1.23)

and

a(t) =
√
V 2 +H−2 = H−1 coshHt , (1.24)

where the full metric is then

ds2 = −dt2 + a2(t)
[

dr2

1− r2
+ r2dΩ

]
. (1.25)

Finally, we were asked to express r, θ, φ, and t in terms of X , Y , Z, W , and
V , which we can do by using Eqs. (1.11), (1.13), and (1.22):

r =

√
X2 + Y 2 + Z2

V 2 +H−2

θ = cos−1

(
Z√

X2 + Y 2 + Z2

)

φ = sin−1

(
Y√

X2 + Y 2

)

t = H−1 sinh−1(HV ) .

(1.26)

This coordinate system covers the entire spacetime.

As an alternative, one could replace r in the closed universe metric by ξ, where

r ≡ sin ξ . (1.27)
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Then Eqs. (1.13) are replaced by

X = a sin ξ sin θ cosφ

Y = a sin ξ sin θ sinφ

Z = a sin ξ cos θ

W = a cos ξ ,

(1.28)

and the final metric (Eq. (1.25)) is replaced by

ds2 = −dt2 + a2(t)
[
dξ2 + sin2 ξ dΩ

]
. (1.29)

(c) As the problem suggests, we consider the hypersurface W = W0, for which the
constraint equation can be written as

X2 + Y 2 + Z2 − V 2 = −a2 , (1.30)

where
a =

√
W 2

0 −H−2 . (1.31)

In analogy with Eq. (1.14), we try coordinates

X = a r n̂(θ, φ)

V = a
√
1 + r2 ,

(1.32)

where n̂(θ, φ) is again given by Eq. (1.15). As in (b), we can first explore the
hypersurface by keeping W (and hence a) fixed. Then

dX = a n̂dr + a r dn̂

dV =
a√

1 + r2
r dr ,

(1.33)

and

ds2 = dX2 − dV 2

= a2 dr2 + 2a2 r dr n̂ · dn̂ + a2 r2 dn̂2 − a2

1 + r2
r2 dr2

= a2

[
dr2

1 + r2
+ r2dΩ

]
,

(1.34)
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which is the spatial part of a Robertson–Walker open universe, as desired. To
get the full spacetime metric we allow W to also vary, with

a =
√
W 2 −H−2 , da =

W dW
a

. (1.35)

Then

dX = a n̂dr + a r dn̂ +
r n̂

a
W dW

dV =
a√

1 + r2
r dr +

√
1 + r2

a
WdW ,

(1.36)

which with some more algebra implies that

ds2 = dX2 + dW 2 − dV 2

= a2

[
dr2

1 + r2
+ r2dΩ

]
− dW 2

H2W 2 − 1
.

(1.37)

So this time we insist that

dt =
dW√

H2W 2 − 1
, (1.38)

which integrates to
t = H−1 cosh−1(HW ) , (1.39)

so
W = H−1 coshHt (1.40)

and

a(t) =
√
W 2 −H−2 = H−1 sinhHt . (1.41)

The full metric is then

ds2 = −dt2 + a2(t)
[

dr2

1 + r2
+ r2dΩ

]
, (1.42)

which is exactly the open Robertson–Walker metric that we sought. To express
r, θ, φ, and t in terms of X , Y , Z,W , and V , use Eqs. (1.31), (1.32), and (1.39),
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with the result

r =

√
X2 + Y 2 + Z2

W 2 −H−2

θ = cos−1

(
Z√

X2 + Y 2 + Z2

)

φ = sin−1

(
Y√

X2 + Y 2

)

t = H−1 cosh−1(HW ) .

(1.43)

This coordinate system does not cover the full de Sitter manifold, since the
coordinates have restricted ranges. From Eqs. (1.31) and (1.32), one sees that

W > H−1 and V > 0. (1.44)

As in the closed universe case, there is an alternative coordinate system for the
open universe in which r is replaced by ξ, where in this case

r ≡ sinh ξ . (1.45)

Then Eqs. (1.32) are replaced by

X = a sinh ξ n̂(θ, φ)

V = a cosh ξ ,
(1.46)

and the final metric (Eq. (1.42)) is replaced by

ds2 = −dt2 + a2(t)
[
dξ2 + sinh2 ξ dΩ

]
. (1.47)

(d) As stated in the problem, we choose

V =
√
H−2 − r2 sinhHt

W =
√
H−2 − r2 coshHt .

(1.48)

Then the de Sitter constraint equation becomes

X2 = H−2 −W 2 + V 2 = r2 , (1.49)
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so the natural parameterization is

X = r n̂(θ, φ) , (1.50)

where we again use Eq. (1.15) for n̂(θ, φ). Differentiating, we can write

dV = H
√
H−2 − r2 cosh(Ht) dt− r sinhHt√

H−2 − r2
dr

dW = H
√
H−2 − r2 sinh(Ht) dt− r coshHt√

H−2 − r2
dr

dX = dr n̂ + r dn̂ .

(1.51)

It is then straightforward algebra to show that

ds2 = dX2 + dW 2 − dV 2

= −(1−H2r2)dt2 +
dr2

1−H2r2
+ r2dΩ ,

(1.52)

which is exactly the desired metric.

From Eqs. (1.48) we see that

W ≥ 0 and |V | ≤ |W | . (1.53)

Thus the coordinate system covers only one quadrant of the V -W plane. From
the final form of the metric, Eq. (1.52), one sees that the metric gives a con-
venient picture of the universe as seen by a single geodesic observer, at r = 0,
including all points out to the observer’s horizon at r = H−1.

PROBLEM 2: THE TRANSITION FROM DECELERATION TO AC-
CELERATION (Weinberg, Assorted Problem #5, with addition)
(10 points)†

Suppose that ΩM = 0.25, ΩΛ = 0.75, and ΩK = ΩR = 0. From the Einstein
equations we know one relation involving the acceleration of the scale factor a(t):

ä

a
= −4πG(3p+ ρ) . (2.1)
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Let t∗ be the time since the Big bang (t = 0 here) at which the transition to
acceleration occured. Then

ä(t∗)
a(t∗)

= 0 ⇒ 3p(t∗) + ρ(t∗) = 0 ⇒ p(t∗) = −ρ(t∗)
3

. (2.2)

Now matter has pM ≈ 0, and vacuum energy has pΛ = −ρΛ. Using this we can
write the energy density as a function of scale factor as (Weinberg 1.5.38):

ρ(t) =
3H2

0

8πG

[
ΩΛ + ΩM

( a0

a(t)

)3
]
. (2.3)

So we can write the result of Eq. (2.2) as

−ρΛ = − H2
0

8πG

[
ΩΛ + ΩM

( a0

a(t∗)

)3
]
. (2.4)

But ρΛ = 3H2
0

8πGΩΛ and with a0
a(t∗) = 1 + z∗, where z∗ is the value of the redshift

that radiation gets by traveling towards us since time t∗, we find by replacing these
quantities in Eq. (2.4) that:

ΩΛ =
1
3
[
ΩΛ +ΩM (1 + z∗)3

] ⇒ z∗ =
(2ΩΛ

ΩM

)1/3

− 1 . (2.5)

In the end this evaluates to z∗ = 0.817. To find how long ago the acceleration of
the universe started, we just subtract the time we called t∗ from the present age of
the universe, t0. From Weinberg equation 1.5.42 the age the universe had when the
radiation, arriving to us with redshift z, was released is:

t(z) =
1
H0

∫ 1
1+z

0

dx

x
√
ΩΛ + ΩMx−3

. (2.6)

Here I neglected the curvature and radiation contributions. The present time is
then t0 = t(z = 0); also t∗ = t(z∗), so the time we want to find is:

δt = t(0)− t(z∗) =
1
H0

∫ 1

1
1+z∗

dx

x
√
ΩΛ + ΩMx−3

. (2.7)

If we then further use that ΩΛ+ΩK+ΩR+ΩM = 1 and neglect the radiation and
curvature contributions, we can do this integral analytically. Inserting ΩM = 1−ΩΛ,
t(0) = 13.7Gyr we find:

δt =
1
H0

∫ 1

1
1+z∗

dx

x
√

ΩΛ + (1− ΩΛ)x−3

=
2

3H0

√
ΩΛ

log
[√

ΩΛ x
3/2 +

√
ΩΛ(x3 − 1) + 1

] ∣∣∣x=1

x= 1
1+z∗

⇒ δt ≈ (1/H0)(0.51) .

(2.8)
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Here the value 1/H0 is determined from the given age of 13.7 Gyr:

t0 =
1
H0

∫ 1

0

dx

x
√

ΩΛ + (1− ΩΛ)x−3

=
2

3H0

√
ΩΛ

ArcSinh
(√

ΩΛ

1−ΩΛ

)

⇒ t0 ≈ (1/H0)(1.014) ⇒ 1/H0 ≈ t0/1.014 ≈ 13.5Gyr

(2.9)

Thus δt ≈ (1/H0)(0.51) ≈ 6.9Gyr.

PROBLEM 3: THE VIRIAL THEOREM WITH A HYPOTHETICAL
FORCE LAW (Weinberg, Assorted Problem #5) (10 points)†

Consider a cluster of point masses mn, with coordinates Xi
n, i = 1, 2, 3, with

respect to the center of mass of the system. Let’s start out with the equation in
Weinberg 1.9.3:

−
∑
n,i

X i
n

∂Vcluster

∂X i
n

=
1
2
d2

dt2

(∑
n

mnX2
n

)
− 2T. (3.1)

In the last equation, T is the kinetic energy of the system due to motion about its
center of mass. Vcluster is the total potential energy of the cluster. The assumption
of virialization makes the total time derivative term on the right hand side vanish
so we are left with ∑

n,i

X i
n

∂Vcluster

∂X i
n

= 2T. (3.2)

For a two body interaction between bodies l and p with a potential of the form
V (rlp) = −Gclp/|rl − rp|n with clp = ml mp the partial derivative of Vcluster be-
comes:

Vcluster = −1
2

∑
m �=l

Gcml

|rm − rl|n

=⇒ ∂Vcluster

∂X i
q

= −1
2

∑
m �=l

−nGcml

|rm − rl|n+1

∂|rm − rl|
∂X i

q

=
n

2

∑
m �=l

Gcml

|rm − rl|n+2

(
rl − rm

)
·
(
δq
m − δq

l

)
êi ,

(3.3)
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where êi is the unit vector along the ith direction. Multiplying by Xi
q and summing

over i and q we find:

∑
q,i

X i
q

∂Vcluster

∂X i
q

=
∑

q,i,m �=l

X i
q

[
n

2
Gcml

|rm − rl|n+2

(
rl − rm

)
·
(
δq
m − δq

l

)
êi

]

=
n

2

∑
m �=l

Gcml

|rm − rl|n+2

(
rm − rl

)
·
(
rm − rl

)

= n


1
2

∑
m �=l

Gcml

|rm − rl|n




= −nVcluster.

(3.4)

Here we used rl =
∑

i X
i
l êi. So the virial theorem then takes the form

2T = −nVcluster. (3.5)

One can get write the kinetic energy in terms of the mass-averaged square velocity
relative to the center of mass, 〈v2〉 as T = (1/2)M 〈v2〉, where M is the total mass
of the cluster. A similar thing can be done with Vcluster by considering the mass-
averaged value of 1/rn, where r is the separation between any two masses in the
cluster. It becomes Vcluster = −(1/2)GM2〈(1/rn)〉. Thus using the virial theorem
result we can find the total mass M of the cluster:

2T = −nVcluster

=⇒ 2
(
1
2
M

〈
v2

〉)
= −n

(
−1
2
GM2

〈
1
rn

〉)

=⇒ M =
2

〈
v2

〉
nG

〈
1

rn

〉 .
(3.6)

The values of 〈v2〉 can be obtained from the velocity dispersion arising from
Doppler shifts in the spectra coming from the visible galaxies — assuming that in
statistical equilibrium the visible masses are representative sample of the virialized
cluster. For 〈(1/rn)〉, we can estimate it for clusters with z � 1. For small z, the
angular diameter distance of a cluster dA ≈ z/H0 (from Weinberg 1.4.9 and 1.4.11).
Since the transverse proper distance is related to the angular separation θ and dA as
d = θ dA you get d ≈ θ z/H0. Thus M ∝ 1/Hn

0 . Even if we go to higher z, at which
the dependence of dA on redshift ceases to be linear, we still expect M ∝ 1/Hn

0 .
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PROBLEM 4: TIME OF EMISSION OF LIGHT FROM A VERY DIS-
TANT GALAXY (10 points)∗

The age of the universe at the time of emission of light that reaches us at
redshift z is given by Weinberg’s Eq. (1.5.42):

t(z) =
1
H0

∫ 1/(1+z)

0

dx
x
√
ΩΛ + ΩKx−2 +ΩMx−3 +ΩRx−4

, (4.1)

where ΩK = 1 − ΩΛ − ΩM − ΩR. For the special case of a matter-dominated flat
universe, with ΩM = 1, ΩΛ = ΩK = ΩR = 0, the integral is easily carried out,
giving

t(z) =
2

3H0

1
(1 + z)3/2

. (4.2)

The age of such a universe is given by

t0 = t(0) =
2

3H0
, (4.3)

so
t(z) =

t0
(1 + z)3/2

. (4.4)

For t0 = 13.7 Gyr and z = 6.96, this gives

t(6.96)

∣∣∣∣∣matter
only

=
13.7 Gyr

(1 + 6.96)3/2
= 0.610 Gyr. (4.5)

That is, t(z) is 610 million years.

For the realistic model based on the WMAP 5-year recommended values, as
described in the problem, the integral has to be done numerically, using the con-
version

1
H0

= 9.778 h−1 Gyr , (4.6)

where
H0 = 100h km s−1Mpc−1 , (4.7)

with ΩM = Ωb + Ωdm = 0.0456 + 0.228 = 0.2736. The integrations give an age of
t0 = 13.71 Gyr and a time of emission for the z = 6.96 galaxy given by

t(6.96)

∣∣∣∣∣ WMAP5
parameters

= 0.784 Gyr. (4.8)
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You were not asked to draw a graph, but numerical integration using the
WMAP 5-year recommended parameters leads to the following:

A useful special case is that of a flat universe with matter and vacuum energy,
so ΩR = ΩK = 0, with ΩΛ = 1 − ΩM . In that case the integral can also be done
analytically, with the result

t(z)

∣∣∣∣∣matter/vacuum
only

=
2

3H0

√
ΩΛ

arcsinh
[ √

ΩΛ√
ΩM (1 + z)3/2

]
. (4.9)

Using the WMAP5 values for ΩM and H0, this approximation gives an age t0 =
13.72 Gyr and t(6.96) = 0.786 Gyr, which are both very close to the values found
above for the full numerical integral.

∗Solution written by Alan Guth.
†Solution written by Carlos Santana.


