MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Physics 8.952: Particle Physics of the Early Universe
March 16, 2009 Prof. Alan Guth

PROBLEM SET 2 SOLUTIONS

PROBLEM 1: THE MANY COORDINATE SYSTEMS OF DE SITTER SPACE (20 points)*
(a) The (x, y, z, t) coordinate system is related to the global (V, W, X, Y, Z) system by the equations

$$
\begin{align*}
t & =H^{-1} \ln [H(W+V)] \\
x & =e^{-H t} X \\
y & =e^{-H t} Y \tag{1.1}\\
z & =e^{-H t} Z
\end{align*}
$$

The first of these equations implies that

$$
\begin{equation*}
W+V=H^{-1} e^{H t} \tag{1.2}
\end{equation*}
$$

which then implies that the constraint equation

$$
\begin{equation*}
X^{2}+Y^{2}+Z^{2}+W^{2}-V^{2}=X^{2}+Y^{2}+Z^{2}+(W+V)(W-V)=H^{-2} \tag{1.3}
\end{equation*}
$$

can be rewritten as

$$
\begin{equation*}
e^{2 H t}\left(x^{2}+y^{2}+z^{2}\right)+H^{-1} e^{H t}(W-V)=H^{-2} \tag{1.4}
\end{equation*}
$$

implying

$$
\begin{equation*}
W-V=H^{-1} e^{-H t}-H e^{H t}\left(x^{2}+y^{2}+z^{2}\right) . \tag{1.5}
\end{equation*}
$$

Taking the sum and difference of Eqs. (1.2) and (1.5),

$$
\begin{align*}
W & =H^{-1} \cosh H t-\frac{1}{2} H e^{H t}\left(x^{2}+y^{2}+z^{2}\right) \\
V & =H^{-1} \sinh H t+\frac{1}{2} H e^{H t}\left(x^{2}+y^{2}+z^{2}\right) \tag{1.6}
\end{align*}
$$

The remaining equations for the inverse transformation are

$$
\begin{align*}
X & =e^{H t} x \\
Y & =e^{H t} y \tag{1.7}\\
Z & =e^{H t} z
\end{align*}
$$

The metric

$$
\begin{align*}
\mathrm{d} s^{2} & =\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}-\mathrm{d} V^{2} \\
& =\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+(\mathrm{d} W+\mathrm{d} V)(\mathrm{d} W-\mathrm{d} V) \tag{1.8}
\end{align*}
$$

can then be rewritten by using

$$
\begin{align*}
& \mathrm{d} X=e^{H t}(\mathrm{~d} x+H x \mathrm{~d} t) \\
& \mathrm{d} Y=e^{H t}(\mathrm{~d} y+H y \mathrm{~d} t) \\
& \mathrm{d} Z=e^{H t}(\mathrm{~d} z+H z \mathrm{~d} t) \\
& \mathrm{d} W+\mathrm{d} V=e^{H t} \mathrm{~d} t \tag{1.9}\\
& \mathrm{~d} W-\mathrm{d} V=-\left[e^{H t} H^{2}\left(x^{2}+y^{2}+z^{2}\right)+e^{-H t}\right] \mathrm{d} t \\
& \quad-2 e^{H t} H(x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z) .
\end{align*}
$$

By combining Eqs. (1.8) and (1.9), one finds

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+e^{2 H t}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \tag{1.10}
\end{equation*}
$$

which is exactly the flat Robertson-Walker metric that we are seeking. Only half of the full space is covered, because Eq. (1.2) implies that $W+V>0$.
(b) As the problem explained, for a fixed value of $V=V_{0}$ the space is a 4 -sphere of radius

$$
\begin{equation*}
a=\sqrt{V_{0}^{2}+H^{-2}}, \tag{1.11}
\end{equation*}
$$

since

$$
\begin{equation*}
X^{2}+Y^{2}+Z^{2}+W^{2}=a^{2}=V_{0}^{2}+H^{-2} \tag{1.12}
\end{equation*}
$$

If we wish to put Robertson-Walker closed universe coordinates on this sphere, with $K=1$, then r should be a dimensionless coordinate ranging from 0 to 1 . This can be arranged by choosing

$$
\begin{align*}
X & =a r \sin \theta \cos \phi \\
Y & =a r \sin \theta \sin \phi \\
Z & =a r \cos \theta \tag{1.13}\\
W & =a \sqrt{1-r^{2}}
\end{align*}
$$

More compactly, we can define a 3 -vector \mathbf{X}, with $X^{i} \equiv(X, Y, Z)$ as i runs from 1 to 3 , so then

$$
\begin{align*}
\mathbf{X} & =a r \hat{\boldsymbol{n}}(\theta, \phi) \\
W & =a \sqrt{1-r^{2}}, \tag{1.14}
\end{align*}
$$

where

$$
\begin{align*}
\hat{\boldsymbol{n}}^{1}(\theta, \phi) & =\sin \theta \cos \phi \\
\hat{\boldsymbol{n}}^{2}(\theta, \phi) & =\sin \theta \sin \phi \tag{1.15}\\
\hat{\boldsymbol{n}}^{3}(\theta, \phi) & =\cos \theta .
\end{align*}
$$

We can check that we have the right metric on the 4 -sphere by calculating the relevant differentials while holding V fixed. Then

$$
\begin{align*}
\mathrm{d} \mathbf{X} & =a \hat{\boldsymbol{n}} \mathrm{~d} r+a r \mathrm{~d} \hat{\boldsymbol{n}} \\
\mathrm{~d} W & =-\frac{a}{\sqrt{1-r^{2}}} r \mathrm{~d} r \tag{1.16}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{d} s^{2} & =\mathrm{d} \mathbf{X}^{2}+\mathrm{d} W^{2} \\
& =a^{2} \mathrm{~d} r^{2}+2 a^{2} r \mathrm{~d} r \hat{\boldsymbol{n}} \cdot \mathrm{~d} \hat{\boldsymbol{n}}+a^{2} r^{2} \mathrm{~d} \hat{\boldsymbol{n}}^{2}+\frac{a^{2}}{1-r^{2}} r^{2} \mathrm{~d} r^{2} \tag{1.17}\\
& =a^{2}\left[\frac{\mathrm{~d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \Omega\right]
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{d} \Omega=\mathrm{d} \hat{\boldsymbol{n}}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{1.18}
\end{equation*}
$$

and I used the fact that $\hat{\boldsymbol{n}} \cdot \mathrm{d} \hat{\boldsymbol{n}}=0$. This is the metric that we wanted. To get the full spacetime metric, we allow V to vary as well, with

$$
\begin{equation*}
a=\sqrt{V^{2}+H^{-2}}, \quad \mathrm{~d} a=\frac{V \mathrm{~d} V}{a} \tag{1.19}
\end{equation*}
$$

Then

$$
\begin{align*}
\mathrm{d} \mathbf{X} & =a \hat{\boldsymbol{n}} \mathrm{~d} r+a r \mathrm{~d} \hat{\boldsymbol{n}}+\frac{r \hat{\boldsymbol{n}}}{a} V \mathrm{~d} V \\
\mathrm{~d} W & =-\frac{a}{\sqrt{1-r^{2}}} r \mathrm{~d} r+\frac{\sqrt{1-r^{2}}}{a} V \mathrm{~d} V \tag{1.19}
\end{align*}
$$

and after some algebra

$$
\begin{align*}
\mathrm{d} s^{2} & =\mathrm{d} \mathbf{X}^{2}+\mathrm{d} W^{2}-\mathrm{d} V^{2} \\
& =a^{2}\left[\frac{\mathrm{~d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \Omega\right]-\frac{\mathrm{d} V^{2}}{H^{2} V^{2}+1} \tag{1.20}
\end{align*}
$$

This will match the closed Robertson-Walker form that we are looking for if

$$
\begin{equation*}
\mathrm{d} t=\frac{\mathrm{d} V}{\sqrt{H^{2} V^{2}+1}} \tag{1.21}
\end{equation*}
$$

which can be integrated to give

$$
\begin{equation*}
t=H^{-1} \sinh ^{-1}(H V) \tag{1.22}
\end{equation*}
$$

So

$$
\begin{equation*}
V=H^{-1} \sinh H t \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
a(t)=\sqrt{V^{2}+H^{-2}}=H^{-1} \cosh H t \tag{1.24}
\end{equation*}
$$

where the full metric is then

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \Omega\right] \tag{1.25}
\end{equation*}
$$

Finally, we were asked to express r, θ, ϕ, and t in terms of X, Y, Z, W, and V, which we can do by using Eqs. (1.11), (1.13), and (1.22):

$$
\begin{align*}
& r=\sqrt{\frac{X^{2}+Y^{2}+Z^{2}}{V^{2}+H^{-2}}} \\
& \theta=\cos ^{-1}\left(\frac{Z}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\right) \tag{1.26}\\
& \phi=\sin ^{-1}\left(\frac{Y}{\sqrt{X^{2}+Y^{2}}}\right) \\
& t=H^{-1} \sinh ^{-1}(H V)
\end{align*}
$$

This coordinate system covers the entire spacetime.
As an alternative, one could replace r in the closed universe metric by ξ, where

$$
\begin{equation*}
r \equiv \sin \xi \tag{1.27}
\end{equation*}
$$

Then Eqs. (1.13) are replaced by

$$
\begin{align*}
X & =a \sin \xi \sin \theta \cos \phi \\
Y & =a \sin \xi \sin \theta \sin \phi \\
Z & =a \sin \xi \cos \theta \tag{1.28}\\
W & =a \cos \xi
\end{align*}
$$

and the final metric (Eq. (1.25)) is replaced by

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\mathrm{d} \xi^{2}+\sin ^{2} \xi \mathrm{~d} \Omega\right] \tag{1.29}
\end{equation*}
$$

(c) As the problem suggests, we consider the hypersurface $W=W_{0}$, for which the constraint equation can be written as

$$
\begin{equation*}
X^{2}+Y^{2}+Z^{2}-V^{2}=-a^{2} \tag{1.30}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\sqrt{W_{0}^{2}-H^{-2}} \tag{1.31}
\end{equation*}
$$

In analogy with Eq. (1.14), we try coordinates

$$
\begin{align*}
& \mathbf{X}=a r \hat{\boldsymbol{n}}(\theta, \phi) \\
& V=a \sqrt{1+r^{2}} \tag{1.32}
\end{align*}
$$

where $\hat{\boldsymbol{n}}(\theta, \phi)$ is again given by Eq. (1.15). As in (b), we can first explore the hypersurface by keeping W (and hence a) fixed. Then

$$
\begin{align*}
\mathrm{d} \mathbf{X} & =a \hat{\boldsymbol{n}} \mathrm{~d} r+a r \mathrm{~d} \hat{\boldsymbol{n}} \\
d V & =\frac{a}{\sqrt{1+r^{2}}} r \mathrm{~d} r \tag{1.33}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{d} s^{2} & =\mathrm{d} \mathbf{X}^{2}-\mathrm{d} V^{2} \\
& =a^{2} \mathrm{~d} r^{2}+2 a^{2} r \mathrm{~d} r \hat{\boldsymbol{n}} \cdot \mathrm{~d} \hat{\boldsymbol{n}}+a^{2} r^{2} \mathrm{~d} \hat{\boldsymbol{n}}^{2}-\frac{a^{2}}{1+r^{2}} r^{2} \mathrm{~d} r^{2} \tag{1.34}\\
& =a^{2}\left[\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \Omega\right]
\end{align*}
$$

which is the spatial part of a Robertson-Walker open universe, as desired. To get the full spacetime metric we allow W to also vary, with

$$
\begin{equation*}
a=\sqrt{W^{2}-H^{-2}}, \quad \mathrm{~d} a=\frac{W \mathrm{~d} W}{a} \tag{1.35}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathrm{d} \mathbf{X}=a \hat{\boldsymbol{n}} \mathrm{~d} r+a r \mathrm{~d} \hat{\boldsymbol{n}}+\frac{r \hat{\boldsymbol{n}}}{a} W \mathrm{~d} W \\
& \mathrm{~d} V=\frac{a}{\sqrt{1+r^{2}}} r \mathrm{~d} r+\frac{\sqrt{1+r^{2}}}{a} W \mathrm{~d} W \tag{1.36}
\end{align*}
$$

which with some more algebra implies that

$$
\begin{align*}
\mathrm{d} s^{2} & =\mathrm{d} \mathbf{X}^{2}+\mathrm{d} W^{2}-\mathrm{d} V^{2} \\
& =a^{2}\left[\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \Omega\right]-\frac{\mathrm{d} W^{2}}{H^{2} W^{2}-1} \tag{1.37}
\end{align*}
$$

So this time we insist that

$$
\begin{equation*}
\mathrm{d} t=\frac{\mathrm{d} W}{\sqrt{H^{2} W^{2}-1}} \tag{1.38}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
t=H^{-1} \cosh ^{-1}(H W) \tag{1.39}
\end{equation*}
$$

so

$$
\begin{equation*}
W=H^{-1} \cosh H t \tag{1.40}
\end{equation*}
$$

and

$$
\begin{equation*}
a(t)=\sqrt{W^{2}-H^{-2}}=H^{-1} \sinh H t \tag{1.41}
\end{equation*}
$$

The full metric is then

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \Omega\right] \tag{1.42}
\end{equation*}
$$

which is exactly the open Robertson-Walker metric that we sought. To express r, θ, ϕ, and t in terms of X, Y, Z, W, and V, use Eqs. (1.31), (1.32), and (1.39),
with the result

$$
\begin{align*}
& r=\sqrt{\frac{X^{2}+Y^{2}+Z^{2}}{W^{2}-H^{-2}}} \\
& \theta=\cos ^{-1}\left(\frac{Z}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\right) \tag{1.43}\\
& \phi=\sin ^{-1}\left(\frac{Y}{\sqrt{X^{2}+Y^{2}}}\right) \\
& t=H^{-1} \cosh ^{-1}(H W)
\end{align*}
$$

This coordinate system does not cover the full de Sitter manifold, since the coordinates have restricted ranges. From Eqs. (1.31) and (1.32), one sees that

$$
\begin{equation*}
W>H^{-1} \text { and } V>0 \tag{1.44}
\end{equation*}
$$

As in the closed universe case, there is an alternative coordinate system for the open universe in which r is replaced by ξ, where in this case

$$
\begin{equation*}
r \equiv \sinh \xi \tag{1.45}
\end{equation*}
$$

Then Eqs. (1.32) are replaced by

$$
\begin{align*}
& \mathbf{X}=a \sinh \xi \hat{\boldsymbol{n}}(\theta, \phi) \\
& V=a \cosh \xi \tag{1.46}
\end{align*}
$$

and the final metric (Eq. (1.42)) is replaced by

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\mathrm{d} \xi^{2}+\sinh ^{2} \xi \mathrm{~d} \Omega\right] \tag{1.47}
\end{equation*}
$$

(d) As stated in the problem, we choose

$$
\begin{align*}
V & =\sqrt{H^{-2}-r^{2}} \sinh H t \tag{1.48}\\
W & =\sqrt{H^{-2}-r^{2}} \cosh H t
\end{align*}
$$

Then the de Sitter constraint equation becomes

$$
\begin{equation*}
\mathbf{X}^{2}=H^{-2}-W^{2}+V^{2}=r^{2} \tag{1.49}
\end{equation*}
$$

so the natural parameterization is

$$
\begin{equation*}
\mathbf{X}=r \hat{\boldsymbol{n}}(\theta, \phi), \tag{1.50}
\end{equation*}
$$

where we again use Eq. (1.15) for $\hat{\boldsymbol{n}}(\theta, \phi)$. Differentiating, we can write

$$
\begin{align*}
\mathrm{d} V & =H \sqrt{H^{-2}-r^{2}} \cosh (H t) \mathrm{d} t-\frac{r \sinh H t}{\sqrt{H^{-2}-r^{2}}} \mathrm{~d} r \\
\mathrm{~d} W & =H \sqrt{H^{-2}-r^{2}} \sinh (H t) \mathrm{d} t-\frac{r \cosh H t}{\sqrt{H^{-2}-r^{2}}} \mathrm{~d} r \tag{1.51}\\
\mathrm{~d} \mathbf{X} & =\mathrm{d} r \hat{\boldsymbol{n}}+r \mathrm{~d} \hat{\boldsymbol{n}} .
\end{align*}
$$

It is then straightforward algebra to show that

$$
\begin{align*}
\mathrm{d} s^{2} & =\mathrm{d} \mathbf{X}^{2}+\mathrm{d} W^{2}-\mathrm{d} V^{2} \\
& =-\left(1-H^{2} r^{2}\right) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{1-H^{2} r^{2}}+r^{2} \mathrm{~d} \Omega \tag{1.52}
\end{align*}
$$

which is exactly the desired metric.
From Eqs. (1.48) we see that

$$
\begin{equation*}
W \geq 0 \text { and }|V| \leq|W| \tag{1.53}
\end{equation*}
$$

Thus the coordinate system covers only one quadrant of the $V-W$ plane. From the final form of the metric, Eq. (1.52), one sees that the metric gives a convenient picture of the universe as seen by a single geodesic observer, at $r=0$, including all points out to the observer's horizon at $r=H^{-1}$.

PROBLEM 2: THE TRANSITION FROM DECELERATION TO ACCELERATION (Weinberg, Assorted Problem \#5, with addition) (10 points) ${ }^{\dagger}$

Suppose that $\Omega_{M}=0.25, \Omega_{\Lambda}=0.75$, and $\Omega_{K}=\Omega_{R}=0$. From the Einstein equations we know one relation involving the acceleration of the scale factor $a(t)$:

$$
\begin{equation*}
\frac{\ddot{a}}{a}=-4 \pi G(3 p+\rho) . \tag{2.1}
\end{equation*}
$$

Let t^{*} be the time since the Big bang ($t=0$ here) at which the transition to acceleration occured. Then

$$
\begin{equation*}
\frac{\ddot{a}\left(t^{*}\right)}{a\left(t^{*}\right)}=0 \Rightarrow 3 p\left(t^{*}\right)+\rho\left(t^{*}\right)=0 \Rightarrow p\left(t^{*}\right)=-\frac{\rho\left(t^{*}\right)}{3} . \tag{2.2}
\end{equation*}
$$

Now matter has $p_{M} \approx 0$, and vacuum energy has $p_{\Lambda}=-\rho_{\Lambda}$. Using this we can write the energy density as a function of scale factor as (Weinberg 1.5.38):

$$
\begin{equation*}
\rho(t)=\frac{3 H_{0}^{2}}{8 \pi G}\left[\Omega_{\Lambda}+\Omega_{M}\left(\frac{a_{0}}{a(t)}\right)^{3}\right] . \tag{2.3}
\end{equation*}
$$

So we can write the result of Eq. (2.2) as

$$
\begin{equation*}
-\rho_{\Lambda}=-\frac{H_{0}^{2}}{8 \pi G}\left[\Omega_{\Lambda}+\Omega_{M}\left(\frac{a_{0}}{a\left(t^{*}\right)}\right)^{3}\right] \tag{2.4}
\end{equation*}
$$

But $\rho_{\Lambda}=\frac{3 H_{0}^{2}}{8 \pi G} \Omega_{\Lambda}$ and with $\frac{a_{0}}{a\left(t^{*}\right)}=1+z^{*}$, where z^{*} is the value of the redshift that radiation gets by traveling towards us since time t^{*}, we find by replacing these quantities in Eq. (2.4) that:

$$
\begin{equation*}
\Omega_{\Lambda}=\frac{1}{3}\left[\Omega_{\Lambda}+\Omega_{M}\left(1+z^{*}\right)^{3}\right] \Rightarrow z^{*}=\left(\frac{2 \Omega_{\Lambda}}{\Omega_{M}}\right)^{1 / 3}-1 \tag{2.5}
\end{equation*}
$$

In the end this evaluates to $z^{*}=0.817$. To find how long ago the acceleration of the universe started, we just subtract the time we called t^{*} from the present age of the universe, t_{0}. From Weinberg equation 1.5.42 the age the universe had when the radiation, arriving to us with redshift z, was released is:

$$
\begin{equation*}
t(z)=\frac{1}{H_{0}} \int_{0}^{\frac{1}{1+z}} \frac{d x}{x \sqrt{\Omega_{\Lambda}+\Omega_{M} x^{-3}}} \tag{2.6}
\end{equation*}
$$

Here I neglected the curvature and radiation contributions. The present time is then $t_{0}=t(z=0)$; also $t^{*}=t\left(z^{*}\right)$, so the time we want to find is:

$$
\begin{equation*}
\delta t=t(0)-t\left(z^{*}\right)=\frac{1}{H_{0}} \int_{\frac{1}{1+z^{*}}}^{1} \frac{d x}{x \sqrt{\Omega_{\Lambda}+\Omega_{M} x^{-3}}} . \tag{2.7}
\end{equation*}
$$

If we then further use that $\Omega_{\Lambda}+\Omega_{K}+\Omega_{R}+\Omega_{M}=1$ and neglect the radiation and curvature contributions, we can do this integral analytically. Inserting $\Omega_{M}=1-\Omega_{\Lambda}$, $t(0)=13.7$ Gyr we find:

$$
\begin{align*}
\delta t & =\frac{1}{H_{0}} \int_{\frac{1}{1+z^{*}}}^{1} \frac{d x}{x \sqrt{\Omega_{\Lambda}+\left(1-\Omega_{\Lambda}\right) x^{-3}}} \\
& =\left.\frac{2}{3 H_{0} \sqrt{\Omega_{\Lambda}}} \log \left[\sqrt{\Omega_{\Lambda}} x^{3 / 2}+\sqrt{\Omega_{\Lambda}\left(x^{3}-1\right)+1}\right]\right|_{x=\frac{1}{1+z^{*}}} ^{x=1} \tag{2.8}\\
& \Rightarrow \delta t \approx\left(1 / H_{0}\right)(0.51)
\end{align*}
$$

Here the value $1 / H_{0}$ is determined from the given age of 13.7 Gyr :

$$
\begin{align*}
t_{0} & =\frac{1}{H_{0}} \int_{0}^{1} \frac{d x}{x \sqrt{\Omega_{\Lambda}+\left(1-\Omega_{\Lambda}\right) x^{-3}}} \\
& =\frac{2}{3 H_{0} \sqrt{\Omega_{\Lambda}}} \operatorname{ArcSinh}\left(\sqrt{\frac{\Omega_{\Lambda}}{1-\Omega_{\Lambda}}}\right) \tag{2.9}\\
\Rightarrow t_{0} & \approx\left(1 / H_{0}\right)(1.014) \Rightarrow 1 / H_{0} \approx t_{0} / 1.014 \approx 13.5 \mathrm{Gyr}
\end{align*}
$$

Thus $\delta t \approx\left(1 / H_{0}\right)(0.51) \approx 6.9 \mathrm{Gyr}$.

PROBLEM 3: THE VIRIAL THEOREM WITH A HYPOTHETICAL FORCE LAW (Weinberg, Assorted Problem \#5) (10 points) ${ }^{\dagger}$

Consider a cluster of point masses m_{n}, with coordinates $X_{n}^{i}, i=1,2,3$, with respect to the center of mass of the system. Let's start out with the equation in Weinberg 1.9.3:

$$
\begin{equation*}
-\sum_{n, i} X_{n}^{i} \frac{\partial V_{\text {cluster }}}{\partial X_{n}^{i}}=\frac{1}{2} \frac{d^{2}}{d t^{2}}\left(\sum_{n} m_{n} \boldsymbol{X}_{n}^{2}\right)-2 T \tag{3.1}
\end{equation*}
$$

In the last equation, T is the kinetic energy of the system due to motion about its center of mass. $V_{\text {cluster }}$ is the total potential energy of the cluster. The assumption of virialization makes the total time derivative term on the right hand side vanish so we are left with

$$
\begin{equation*}
\sum_{n, i} X_{n}^{i} \frac{\partial V_{\text {cluster }}}{\partial X_{n}^{i}}=2 T \tag{3.2}
\end{equation*}
$$

For a two body interaction between bodies l and p with a potential of the form $V\left(r_{l p}\right)=-G c_{l p} /\left|\boldsymbol{r}_{l}-\boldsymbol{r}_{p}\right|^{n}$ with $c_{l p}=m_{l} m_{p}$ the partial derivative of $V_{\text {cluster }}$ becomes:

$$
\begin{align*}
V_{\text {cluster }} & =-\frac{1}{2} \sum_{m \neq l} \frac{G c_{m l}}{\left|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right|^{n}} \\
\Longrightarrow \quad \frac{\partial V_{\text {cluster }}}{\partial X_{q}^{i}} & =-\frac{1}{2} \sum_{m \neq l} \frac{-n G c_{m l}}{\boldsymbol{r}_{m}-\left.\boldsymbol{r}_{l}\right|^{n+1}} \frac{\partial\left|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right|}{\partial X_{q}^{i}} \tag{3.3}\\
& =\frac{n}{2} \sum_{m \neq l} \frac{G c_{m l}}{\left|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right|^{n+2}}\left(\boldsymbol{r}_{l}-\boldsymbol{r}_{m}\right) \cdot\left(\delta_{m}^{q}-\delta_{l}^{q}\right) \hat{\boldsymbol{e}}_{i}
\end{align*}
$$

where $\hat{\boldsymbol{e}}_{i}$ is the unit vector along the i th direction. Multiplying by X_{q}^{i} and summing over i and q we find:

$$
\begin{align*}
\sum_{q, i} X_{q}^{i} \frac{\partial V_{\text {cluster }}}{\partial X_{q}^{i}} & =\sum_{q, i, m \neq l} X_{q}^{i}\left[\frac{n}{2} \frac{G c_{m l}}{\left|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right|^{n+2}}\left(\boldsymbol{r}_{l}-\boldsymbol{r}_{m}\right) \cdot\left(\delta_{m}^{q}-\delta_{l}^{q}\right) \hat{\boldsymbol{e}}_{i}\right] \\
& =\frac{n}{2} \sum_{m \neq l} \frac{G c_{m l}}{\left|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right|^{n+2}}\left(\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right) \cdot\left(\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right) \tag{3.4}\\
& =n\left[\frac{1}{2} \sum_{m \neq l} \frac{G c_{m l}}{\left|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right|^{n}}\right] \\
& =-n V_{\text {cluster }}
\end{align*}
$$

Here we used $\boldsymbol{r}_{l}=\sum_{i} X_{l}^{i} \hat{\boldsymbol{e}}_{i}$. So the virial theorem then takes the form

$$
\begin{equation*}
2 T=-n V_{\text {cluster }} \tag{3.5}
\end{equation*}
$$

One can get write the kinetic energy in terms of the mass-averaged square velocity relative to the center of mass, $\left\langle v^{2}\right\rangle$ as $T=(1 / 2) M\left\langle v^{2}\right\rangle$, where M is the total mass of the cluster. A similar thing can be done with $V_{\text {cluster }}$ by considering the massaveraged value of $1 / r^{n}$, where r is the separation between any two masses in the cluster. It becomes $V_{\text {cluster }}=-(1 / 2) G M^{2}\left\langle\left(1 / r^{n}\right)\right\rangle$. Thus using the virial theorem result we can find the total mass M of the cluster:

$$
\begin{align*}
2 T & =-n V_{\text {cluster }} \\
\Longrightarrow 2\left(\frac{1}{2} M\left\langle v^{2}\right\rangle\right) & =-n\left(-\frac{1}{2} G M^{2}\left\langle\frac{1}{r^{n}}\right\rangle\right) \tag{3.6}\\
\Longrightarrow M & =\frac{2\left\langle v^{2}\right\rangle}{n G\left\langle\frac{1}{r^{n}}\right\rangle} .
\end{align*}
$$

The values of $\left\langle v^{2}\right\rangle$ can be obtained from the velocity dispersion arising from Doppler shifts in the spectra coming from the visible galaxies - assuming that in statistical equilibrium the visible masses are representative sample of the virialized cluster. For $\left\langle\left(1 / r^{n}\right)\right\rangle$, we can estimate it for clusters with $z \ll 1$. For small z, the angular diameter distance of a cluster $d_{A} \approx z / H_{0}$ (from Weinberg 1.4.9 and 1.4.11). Since the transverse proper distance is related to the angular separation θ and d_{A} as $d=\theta d_{A}$ you get $d \approx \theta z / H_{0}$. Thus $M \propto 1 / H_{0}^{n}$. Even if we go to higher z, at which the dependence of d_{A} on redshift ceases to be linear, we still expect $M \propto 1 / H_{0}^{n}$.

PROBLEM 4: TIME OF EMISSION OF LIGHT FROM A VERY DISTANT GALAXY (10 points)*

The age of the universe at the time of emission of light that reaches us at redshift z is given by Weinberg's Eq. (1.5.42):

$$
\begin{equation*}
t(z)=\frac{1}{H_{0}} \int_{0}^{1 /(1+z)} \frac{\mathrm{d} x}{x \sqrt{\Omega_{\Lambda}+\Omega_{K} x^{-2}+\Omega_{M} x^{-3}+\Omega_{R} x^{-4}}} \tag{4.1}
\end{equation*}
$$

where $\Omega_{K}=1-\Omega_{\Lambda}-\Omega_{M}-\Omega_{R}$. For the special case of a matter-dominated flat universe, with $\Omega_{M}=1, \Omega_{\Lambda}=\Omega_{K}=\Omega_{R}=0$, the integral is easily carried out, giving

$$
\begin{equation*}
t(z)=\frac{2}{3 H_{0}} \frac{1}{(1+z)^{3 / 2}} . \tag{4.2}
\end{equation*}
$$

The age of such a universe is given by

$$
\begin{equation*}
t_{0}=t(0)=\frac{2}{3 H_{0}} \tag{4.3}
\end{equation*}
$$

so

$$
\begin{equation*}
t(z)=\frac{t_{0}}{(1+z)^{3 / 2}} \tag{4.4}
\end{equation*}
$$

For $t_{0}=13.7$ Gyr and $z=6.96$, this gives

$$
\begin{equation*}
\left.t(6.96)\right|_{\substack{\text { matter } \\ \text { only }}}=\frac{13.7 \mathrm{Gyr}}{(1+6.96)^{3 / 2}}=0.610 \mathrm{Gyr} \tag{4.5}
\end{equation*}
$$

That is, $t(z)$ is 610 million years.
For the realistic model based on the WMAP 5-year recommended values, as described in the problem, the integral has to be done numerically, using the conversion

$$
\begin{equation*}
\frac{1}{H_{0}}=9.778 h^{-1} \mathrm{Gyr} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{0}=100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \tag{4.7}
\end{equation*}
$$

with $\Omega_{M}=\Omega_{b}+\Omega_{\mathrm{dm}}=0.0456+0.228=0.2736$. The integrations give an age of $t_{0}=13.71 \mathrm{Gyr}$ and a time of emission for the $z=6.96$ galaxy given by

$$
\begin{equation*}
\left.t(6.96)\right|_{\text {parameters }} ^{\text {WMAP5 }}=0.784 \mathrm{Gyr} \tag{4.8}
\end{equation*}
$$

You were not asked to draw a graph, but numerical integration using the WMAP 5-year recommended parameters leads to the following:

A useful special case is that of a flat universe with matter and vacuum energy, so $\Omega_{R}=\Omega_{K}=0$, with $\Omega_{\Lambda}=1-\Omega_{M}$. In that case the integral can also be done analytically, with the result

$$
t(z) \left\lvert\, \begin{gather*}
\operatorname{matter} / \text { vacuum } \tag{4.9}\\
\text { only }
\end{gather*}=\frac{2}{3 H_{0} \sqrt{\Omega_{\Lambda}}} \operatorname{arcsinh}\left[\frac{\sqrt{\Omega_{\Lambda}}}{\sqrt{\Omega_{M}}(1+z)^{3 / 2}}\right] .\right.
$$

Using the WMAP5 values for Ω_{M} and H_{0}, this approximation gives an age $t_{0}=$ 13.72 Gyr and $t(6.96)=0.786 \mathrm{Gyr}$, which are both very close to the values found above for the full numerical integral.
*Solution written by Alan Guth.
†Solution written by Carlos Santana.

