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P
rof.

A
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G
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P
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O
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L
E
M

S
E
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2
S
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L
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T
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N
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P
R

O
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L
E
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S
P
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(20
points) ∗

(a)
T
he

(x
,y
,z
,t)

coordinate
system

is
related

to
the

global(V
,W

,X
,Y
,Z

)
system

by
the

equations
t
=
H

−
1
ln

[H
(W

+
V
)]

x
=
e −

H
tX

y
=
e −

H
tY

z
=
e −

H
tZ

.

(1.1)

T
he

first
of

these
equations

im
plies

that

W
+
V

=
H

−
1e

H
t
,

(1.2)

w
hich

then
im

plies
that

the
constraint

equation

X
2
+
Y

2
+
Z

2
+
W

2−
V

2
=
X

2
+
Y

2
+
Z

2
+
(W

+
V
)(W

−
V
)
=
H

−
2
(1.3)

can
be

rew
ritten

as

e
2
H

t(x
2
+
y
2
+
z
2)

+
H

−
1e

H
t(W

−
V
)
=
H

−
2
,

(1.4)

im
plying

W
−
V

=
H

−
1e −

H
t−

H
e
H

t(x
2
+
y
2
+
z
2)

.
(1.5)

T
aking

the
sum

and
difference

of
E
qs.(1.2)

and
(1.5),

W
=
H

−
1
cosh

H
t−

12
H
e
H

t(x
2
+
y
2
+
z
2)

V
=
H

−
1
sinh

H
t+

12
H
e
H

t(x
2
+
y
2
+
z
2)

.

(1.6)

T
he

rem
aining

equations
for

the
inverse

transform
ation

are

X
=
e
H

tx

Y
=
e
H

ty

Z
=
e
H

tz
.

(1.7)
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T
he

m
etric

d
s
2
=

d
X

2
+

d
Y

2
+

d
Z

2
+

d
W

2−
d
V

2

=
d
X

2
+

d
Y

2
+

d
Z

2
+

(d
W

+
d
V
)(d

W
−

d
V
)

(1.8)

can
then

be
rew

ritten
by

using

d
X

=
e
H

t(d
x
+
H
xd
t)

d
Y

=
e
H

t(d
y
+
H
yd
t)

d
Z

=
e
H

t(d
z
+
H
zd
t)

d
W

+
d
V

=
e
H

td
t

d
W

−
d
V

=
− [e

H
tH

2(x
2
+
y
2
+
z
2)

+
e −

H
t ]d

t

−
2
e
H

tH
(xd

x
+
yd
y
+
zd
z)

.

(1.9)

B
y
com

bining
E
qs.

(1.8)
and

(1.9),one
finds

d
s
2
=

−
d
t
2
+
e
2
H

t(d
x

2
+
d
y
2
+

d
z
2)

,
(1.10)

w
hich

is
exactly

the
flat

R
obertson-W

alker
m
etric

that
w
e
are

seeking.
O
nly

half
of

the
full

space
is

covered,
because

E
q.(1.2)

im
plies

that
W

+
V
>

0
.

(b)
A
s
the

problem
explained,

for
a
fixed

value
of
V

=
V

0
the

space
is

a
4-sphere

of
radius

a
= √

V
20
+
H

−
2
,

(1.11)

since
X

2
+
Y

2
+
Z

2
+
W

2
=
a
2
=
V

20
+
H

−
2
.

(1.12)

Ifw
e
w
ish

to
put

R
obertson–W

alker
closed

universe
coordinates

on
this

sphere,
w
ith

K
=

1,
then

r
should

be
a
dim

ensionless
coordinate

ranging
from

0
to

1.
T
his

can
be

arranged
by

choosing

X
=
a
r
sin

θ
cos

φ

Y
=
a
r
sin

θ
sin

φ

Z
=
a
r
cos

θ

W
=
a √

1−
r
2
.

(1.13)
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M
ore

com
pactly,

w
e
can

define
a
3-vector

X
,
w
ith

X
i≡

(X
,Y
,Z

)
as

i
runs

from
1
to

3,so
then

X
=
a
r
n̂
(θ
,φ)

W
=
a √

1−
r
2
,

(1.14)

w
here

n̂
1(θ

,φ)
=

sin
θ
cos

φ

n̂
2(θ

,φ)
=

sin
θ
sin

φ

n̂
3(θ

,φ)
=

cos
θ
.

(1.15)

W
e
can

check
that

w
e
have

the
right

m
etric

on
the

4-sphere
by

calculating
the

relevant
differentials

w
hile

holding
V

fixed.
T
hen

dX
=
a

n̂
d
r
+
a
r
d
n̂

d
W

=
−

a
√
1−

r
2
r
d
r
,

(1.16)

and

d
s
2
=

dX
2
+

d
W

2

=
a
2
d
r
2
+
2
a
2
r
d
r
n̂
·d

n̂
+
a
2
r
2
d
n̂

2
+

a
2

1−
r
2
r
2
d
r
2

=
a
2 [

d
r
2

1−
r
2
+
r
2dΩ ]

,

(1.17)

w
here

dΩ
=

d
n̂

2
=

d
θ
2
+
sin

2
θ
d
φ

2
,

(1.18)

and
I
used

the
fact

that
n̂
·d

n̂
=

0.
T
his

is
the

m
etric

that
w
e
w
anted.

T
o
get

the
full

spacetim
e
m
etric,

w
e
allow

V
to

vary
as

w
ell,

w
ith

a
= √

V
2
+
H

−
2
,

d
a
=

V
d
V

a
.

(1.19)

T
hen

dX
=
a

n̂
d
r
+
a
r
d
n̂
+
r
n̂a
V
d
V

d
W

=
−

a
√
1−

r
2
r
d
r
+

√
1−

r
2

a
V
d
V
,

(1.19)

and
after

som
e
algebra

d
s
2
=

dX
2
+
d
W

2−
d
V

2

=
a
2 [

d
r
2

1−
r
2
+
r
2dΩ ]−

d
V

2

H
2V

2
+
1
.

(1.20)
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T
his

w
illm

atch
the

closed
R
obertson-W

alker
form

that
w
e
are

looking
for

if

d
t
=

d
V

√
H

2V
2
+

1
,

(1.21)

w
hich

can
be

integrated
to

give

t
=
H

−
1
sinh −

1(H
V
)
.

(1.22)

So
V

=
H

−
1
sinh

H
t
,

(1.23)

and

a(t)
= √

V
2
+
H

−
2
=
H

−
1
cosh

H
t
,

(1.24)

w
here

the
full

m
etric

is
then

d
s
2
=

−
d
t
2
+
a
2(t) [

d
r
2

1−
r
2
+
r
2dΩ ]

.
(1.25)

F
inally,

w
e
w
ere

asked
to

express
r,
θ,
φ,

and
t
in

term
s
of
X
,
Y
,
Z
,
W

,
and

V
,w

hich
w
e
can

do
by

using
E
qs.

(1.11),(1.13),and
(1.22):

r
= √

X
2
+
Y

2
+
Z

2

V
2
+
H

−
2

θ
=

cos −
1 (

Z
√
X

2
+
Y

2
+
Z

2 )

φ
=

sin −
1 (

Y
√
X

2
+
Y

2 )

t
=
H

−
1
sinh −

1(H
V
)
.

(1.26)

T
his

coordinate
system

covers
the

entire
spacetim

e.

A
s
an

alternative,one
could

replace
r
in

the
closed

universe
m
etric

by
ξ,w

here

r≡
sin

ξ
.

(1.27)
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T
hen

E
qs.

(1.13)
are

replaced
by

X
=
a
sin

ξ
sin

θ
cos

φ

Y
=
a
sin

ξ
sin

θ
sin

φ

Z
=
a
sin

ξ
cos

θ

W
=
a
cos

ξ
,

(1.28)

and
the

final
m
etric

(E
q.(1.25))

is
replaced

by

d
s
2
=

−
d
t
2
+
a
2(t) [d

ξ
2
+
sin

2
ξ
dΩ ]

.
(1.29)

(c)
A
s
the

problem
suggests,w

e
consider

the
hypersurface

W
=
W

0 ,for
w
hich

the
constraint

equation
can

be
w
ritten

as

X
2
+
Y

2
+
Z

2−
V

2
=

−
a
2
,

(1.30)

w
here

a
= √

W
20 −

H
−

2
.

(1.31)

In
analogy

w
ith

E
q.(1.14),w

e
try

coordinates

X
=
a
r
n̂
(θ
,φ)

V
=
a √

1
+
r
2
,

(1.32)

w
here

n̂
(θ
,φ)

is
again

given
by

E
q.

(1.15).
A
s
in

(b),
w
e
can

first
explore

the
hypersurface

by
keeping

W
(and

hence
a)

fixed.
T
hen

dX
=
a

n̂
d
r
+
a
r
d
n̂

d
V

=
a

√
1
+
r
2
r
d
r
,

(1.33)

and

d
s
2
=

dX
2−

d
V

2

=
a
2
d
r
2
+
2
a
2
r
d
r
n̂
·d

n̂
+
a
2
r
2
d
n̂

2−
a
2

1
+
r
2
r
2
d
r
2

=
a
2 [

d
r
2

1
+
r
2
+
r
2dΩ ]

,

(1.34)
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w
hich

is
the

spatial
part

of
a
R
obertson–W

alker
open

universe,
as

desired.
T
o

get
the

full
spacetim

e
m
etric

w
e
allow

W
to

also
vary,w

ith

a
= √

W
2−

H
−

2
,

d
a
=

W
d
W

a
.

(1.35)

T
hen

dX
=
a

n̂
d
r
+
a
r
d
n̂
+
r
n̂a
W

d
W

d
V

=
a

√
1
+
r
2
r
d
r
+

√
1
+
r
2

a
W

d
W

,

(1.36)

w
hich

w
ith

som
e
m
ore

algebra
im

plies
that

d
s
2
=

dX
2
+
d
W

2−
d
V

2

=
a
2 [

d
r
2

1
+
r
2
+
r
2dΩ ]−

d
W

2

H
2W

2−
1
.

(1.37)

So
this

tim
e
w
e
insist

that

d
t
=

d
W

√
H

2W
2−

1
,

(1.38)

w
hich

integrates
to

t
=
H

−
1
cosh −

1(H
W

)
,

(1.39)

so
W

=
H

−
1
cosh

H
t

(1.40)

and

a(t)
= √

W
2−

H
−

2
=
H

−
1
sinh

H
t
.

(1.41)

T
he

full
m
etric

is
thend

s
2
=

−
d
t
2
+
a
2(t) [

d
r
2

1
+
r
2
+
r
2dΩ ]

,
(1.42)

w
hich

is
exactly

the
open

R
obertson–W

alker
m
etric

that
w
e
sought.

T
o
express

r,
θ,
φ,and

t
in

term
s
of
X
,
Y
,
Z
,
W

,and
V
,use

E
qs.(1.31),(1.32),and

(1.39),



8.952
P

R
O

B
L
E

M
S
E

T
2

S
O

L
U

T
IO

N
S
,
S
P

R
IN

G
2009

p
.
7

w
ith

the
result

r
= √

X
2
+
Y

2
+
Z

2

W
2−

H
−

2

θ
=

cos −
1 (

Z
√
X

2
+
Y

2
+
Z

2 )

φ
=

sin −
1 (

Y
√
X

2
+
Y

2 )

t
=
H

−
1
cosh −

1(H
W

)
.

(1.43)

T
his

coordinate
system

does
not

cover
the

full
de

Sitter
m
anifold,

since
the

coordinates
have

restricted
ranges.

From
E
qs.(1.31)

and
(1.32),one

sees
that

W
>
H

−
1

and
V
>

0
.

(1.44)

A
s
in

the
closed

universe
case,there

is
an

alternative
coordinate

system
for

the
open

universe
in

w
hich

r
is

replaced
by

ξ,w
here

in
this

case

r≡
sinh

ξ
.

(1.45)

T
hen

E
qs.

(1.32)
are

replaced
by

X
=
a
sinh

ξ
n̂
(θ
,φ)

V
=
a
cosh

ξ
,

(1.46)

and
the

final
m
etric

(E
q.(1.42))

is
replaced

by

d
s
2
=

−
d
t
2
+
a
2(t) [d

ξ
2
+
sinh

2
ξ
dΩ ]

.
(1.47)

(d)
A
s
stated

in
the

problem
,
w
e
choose

V
= √

H
−

2−
r
2
sinh

H
t

W
= √

H
−

2−
r
2
cosh

H
t
.

(1.48)

T
hen

the
de

Sitter
constraint

equation
becom

es

X
2
=
H

−
2−

W
2
+
V

2
=
r
2
,

(1.49)
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so
the

natural
param

eterization
is

X
=
r
n̂
(θ
,φ)

,
(1.50)

w
here

w
e
again

use
E
q.(1.15)

for
n̂
(θ
,φ).

D
ifferentiating,

w
e
can

w
rite

d
V

=
H √

H
−

2−
r
2
cosh(H

t)d
t−

r
sinh

H
t

√
H

−
2−

r
2 d
r

d
W

=
H √

H
−

2−
r
2
sinh(H

t)d
t−

r
cosh

H
t

√
H

−
2−

r
2 d
r

dX
=

d
r
n̂
+
r
d
n̂
.

(1.51)

It
is

then
straightforw

ard
algebra

to
show

that

d
s
2
=

dX
2
+

d
W

2−
d
V

2

=
−
(1−

H
2r

2)d
t
2
+

d
r
2

1−
H

2r
2
+
r
2dΩ

,
(1.52)

w
hich

is
exactly

the
desired

m
etric.

From
E
qs.

(1.48)
w
e
see

thatW
≥

0
and

|V|≤
|W

|
.

(1.53)

T
hus

the
coordinate

system
covers

only
one

quadrant
ofthe

V
-W

plane.
From

the
final

form
of

the
m
etric,

E
q.

(1.52),
one

sees
that

the
m
etric

gives
a
con-

venient
picture

of
the

universe
as

seen
by

a
single

geodesic
observer,

at
r
=

0,
including

allpoints
out

to
the

observer’s
horizon

at
r
=
H

−
1.

P
R

O
B

L
E
M

2:
T

H
E

T
R

A
N

S
IT

IO
N

F
R

O
M

D
E
C

E
L
E
R

A
T

IO
N

T
O

A
C

-
C

E
L
E
R

A
T

IO
N

(W
ein

b
erg,

A
ssorted

P
rob

lem
#

5,
w

ith
ad

d
ition

)
(10

points) †

Suppose
that

Ω
M

=
0
.25,

Ω
Λ
=

0
.75,

and
Ω

K
=

Ω
R

=
0.

From
the

E
instein

equations
w
e
know

one
relation

involving
the

acceleration
of

the
scale

factor
a(t):

äa
=

−
4
π
G
(3
p
+
ρ)
.

(2.1)
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L
et

t ∗
be

the
tim

e
since

the
B
ig

bang
(t

=
0
here)

at
w
hich

the
transition

to
acceleration

occured.
T
hen

ä(t ∗)
a(t ∗)

=
0⇒

3
p(t ∗)

+
ρ(t ∗)

=
0⇒

p(t ∗)
=

−
ρ(t ∗)
3

.
(2.2)

N
ow

m
atter

has
p

M
≈

0,
and

vacuum
energy

has
p
Λ

=
−
ρ
Λ .

U
sing

this
w
e
can

w
rite

the
energy

density
as

a
function

of
scale

factor
as

(W
einberg

1.5.38):

ρ(t)
=

3
H

20

8
π
G [Ω

Λ
+

Ω
M (

a
0

a(t) )
3 ]

.
(2.3)

So
w
e
can

w
rite

the
result

of
E
q.(2.2)

as

−
ρ
Λ
=

−
H

20

8
π
G [Ω

Λ
+

Ω
M (

a
0

a(t ∗) )
3 ]

.
(2.4)

B
ut

ρ
Λ

=
3
H

20
8
π

G
Ω

Λ
and

w
ith

a
0

a
(t ∗

)
=

1
+
z ∗,

w
here

z ∗
is

the
value

of
the

redshift
that

radiation
gets

by
traveling

tow
ards

us
since

tim
e
t ∗,w

e
find

by
replacing

these
quantities

in
E
q.(2.4)

that:

Ω
Λ
=

13 [Ω
Λ
+
Ω

M
(1

+
z ∗)

3 ]⇒
z ∗

= (
2Ω

Λ

Ω
M )

1
/
3−

1
.

(2.5)

In
the

end
this

evaluates
to

z ∗
=

0
.817.

T
o
find

how
long

ago
the

acceleration
of

the
universe

started,w
e
just

subtract
the

tim
e
w
e
called

t ∗
from

the
present

age
of

the
universe,

t
0 .

From
W
einberg

equation
1.5.42

the
age

the
universe

had
w
hen

the
radiation,arriving

to
us

w
ith

redshift
z,

w
as

released
is:

t(z)
=

1H
0 ∫

1
1
+

z

0

d
x

x √
Ω

Λ
+

Ω
M
x −

3
.

(2.6)

H
ere

I
neglected

the
curvature

and
radiation

contributions.
T
he

present
tim

e
is

then
t
0
=
t(z

=
0);also

t ∗
=
t(z ∗),so

the
tim

e
w
e
w
ant

to
find

is:

δt
=
t(0)−

t(z ∗)
=

1H
0 ∫

1

1
1
+

z ∗

d
x

x √
Ω

Λ
+

Ω
M
x −

3
.

(2.7)

Ifw
e
then

further
use

that
Ω

Λ +
Ω

K
+
Ω

R
+
Ω

M
=

1
and

neglect
the

radiation
and

curvature
contributions,w

e
can

do
this

integralanalytically.
Inserting

Ω
M

=
1−

Ω
Λ ,

t(0)
=

13
.7
G
yr

w
e
find:

δt
=

1H
0 ∫

1

1
1
+

z ∗

d
x

x √
Ω

Λ
+

(1−
Ω

Λ )x −
3

=
2

3
H

0 √
Ω

Λ

log [√
Ω

Λ
x

3
/
2
+ √

Ω
Λ (x

3−
1)

+
1 ] ∣∣∣ x

=
1

x
=

1
1
+

z ∗

⇒
δt≈

(1
/
H

0 )(0
.51)

.

(2.8)
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H
ere

the
value

1
/
H

0
is

determ
ined

from
the

given
age

of
13.7

G
yr:

t
0
=

1H
0 ∫

1

0

d
x

x √
Ω

Λ
+
(1−

Ω
Λ )x −

3

=
2

3
H

0 √
Ω

Λ

A
rcSinh ( √

Ω
Λ

1−
Ω

Λ )

⇒
t
0 ≈

(1
/
H

0 )(1
.014)⇒

1
/
H

0 ≈
t
0 /1

.014≈
13
.5
G
yr

(2.9)

T
hus

δt≈
(1
/
H

0 )(0
.51)≈

6
.9
G
yr.

P
R

O
B

L
E
M

3:
T

H
E

V
IR

IA
L

T
H

E
O

R
E
M

W
IT

H
A

H
Y

P
O

T
H

E
T

IC
A

L
F
O

R
C

E
L
A
W

(W
ein

b
erg,

A
ssorted

P
rob

lem
#

5)
(10

points) †

C
onsider

a
cluster

of
point

m
asses

m
n ,

w
ith

coordinates
X

in
,
i
=

1
,2
,3,

w
ith

respect
to

the
center

of
m
ass

of
the

system
.
L
et’s

start
out

w
ith

the
equation

in
W
einberg

1.9.3:

− ∑n
,i

X
in

∂
V

c
lu

ste
r

∂
X

in

=
12
d
2

d
t
2 (∑

n

m
n
X

2n )
−

2
T
.

(3.1)

In
the

last
equation,

T
is

the
kinetic

energy
of

the
system

due
to

m
otion

about
its

center
of

m
ass.

V
c
lu

ste
r
is
the

totalpotentialenergy
of

the
cluster.

T
he

assum
ption

of
virialization

m
akes

the
total

tim
e
derivative

term
on

the
right

hand
side

vanish
so

w
e
are

left
w
ith

∑n
,i

X
in

∂
V

c
lu

ste
r

∂
X

in

=
2
T
.

(3.2)

For
a
tw

o
body

interaction
betw

een
bodies

l
and

p
w
ith

a
potential

of
the

form
V
(r

lp )
=

−
G
c
lp /|r

l −
r

p | n
w
ith

c
lp

=
m

l m
p
the

partial
derivative

of
V

c
lu

ste
r
be-

com
es:

V
c
lu

ste
r
=

−
12 ∑m

�=
l

G
c
m

l

|r
m
−

r
l | n

=⇒
∂
V

c
lu

ste
r

∂
X

iq

=
−
12 ∑m

�=
l

−
n
G
c
m

l

|r
m
−

r
l | n

+
1

∂|r
m
−

r
l |

∂
X

iq

=
n2 ∑m

�=
l

G
c
m

l

|r
m
−

r
l | n

+
2 (

r
l −

r
m )· (

δ
qm
−
δ

ql )
ê

i
,

(3.3)
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w
here

ê
i
is
the

unit
vector

along
the

ith
direction.

M
ultiplying

by
X

iq
and

sum
m
ing

over
i
and

q
w
e
find:

∑q
,i

X
iq

∂
V

c
lu

ste
r

∂
X

iq

=
∑q

,i,m
�=

l

X
iq [

n2
G
c
m

l

|r
m
−

r
l | n

+
2 (

r
l −

r
m )· (

δ
qm
−
δ

ql )
ê

i ]

=
n2 ∑m

�=
l

G
c
m

l

|r
m
−

r
l | n

+
2 (

r
m
−

r
l )· (

r
m
−

r
l )

=
n 

12 ∑m
�=

l

G
c
m

l

|r
m
−

r
l | n 

=
−
n
V

c
lu

ste
r .

(3.4)

H
ere

w
e
used

r
l = ∑

i
X

il
ê

i .
So

the
virialtheorem

then
takes

the
form

2
T

=
−
n
V

c
lu

ste
r .

(3.5)

O
ne

can
get

w
rite

the
kinetic

energy
in

term
s
of

the
m
ass-averaged

square
velocity

relative
to

the
center

of
m
ass,〈v

2〉
as

T
=

(1
/2)

M
〈v

2〉,w
here

M
is
the

totalm
ass

of
the

cluster.
A

sim
ilar

thing
can

be
done

w
ith

V
c
lu

ste
r
by

considering
the

m
ass-

averaged
value

of
1/
r

n,
w
here

r
is

the
separation

betw
een

any
tw

o
m
asses

in
the

cluster.
It

becom
es

V
c
lu

ste
r
=

−
(1
/2)

G
M

2〈(1
/
r

n)〉.
T
hus

using
the

virial
theorem

result
w
e
can

find
the

totalm
ass

M
of

the
cluster:

2
T
=

−
n
V

c
lu

ste
r

=⇒
2 (

12
M

〈v
2 〉 )

=
−
n (−

12
G
M

2 〈
1r
n 〉)

=⇒
M

=
2 〈v

2 〉
n
G 〈

1r
n 〉

.

(3.6)

T
he

values
of〈v

2〉
can

be
obtained

from
the

velocity
dispersion

arising
from

D
oppler

shifts
in

the
spectra

com
ing

from
the

visible
galaxies

—
assum

ing
that

in
statisticalequilibrium

the
visible

m
asses

are
representative

sam
ple

of
the

virialized
cluster.

For〈(1
/
r

n)〉,
w
e
can

estim
ate

it
for

clusters
w
ith

z�
1.

For
sm

all
z,

the
angular

diam
eter

distance
ofa

cluster
d

A
≈
z
/
H

0
(from

W
einberg

1.4.9
and

1.4.11).
Since

the
transverse

proper
distance

is
related

to
the

angular
separation

θ
and

d
A
as

d
=
θ
d

A
you

get
d≈

θ
z
/
H

0 .
T
hus

M
∝

1
/
H

n0
.
E
ven

ifw
e
go

to
higher

z,at
w
hich

the
dependence

of
d

A
on

redshift
ceases

to
be

linear,w
e
stillexpect

M
∝

1
/
H

n0
.
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P
R

O
B

L
E
M

4:
T

IM
E

O
F

E
M

IS
S
IO

N
O

F
L
IG

H
T

F
R

O
M

A
V

E
R
Y

D
IS

-
T
A

N
T

G
A

L
A

X
Y

(10
points) ∗

T
he

age
of

the
universe

at
the

tim
e
of

em
ission

of
light

that
reaches

us
at

redshift
z
is

given
by

W
einberg’s

E
q.(1.5.42):

t(z)
=

1H
0 ∫

1
/
(1

+
z
)

0

d
x

x √
Ω

Λ
+

Ω
K
x −

2
+
Ω

M
x −

3
+
Ω

R
x −

4
,

(4.1)

w
here

Ω
K

=
1−

Ω
Λ −

Ω
M

−
Ω

R
.
For

the
special

case
of

a
m
atter-dom

inated
flat

universe,
w
ith

Ω
M

=
1,

Ω
Λ

=
Ω

K
=

Ω
R

=
0,

the
integral

is
easily

carried
out,

giving

t(z)
=

2
3
H

0

1
(1

+
z)

3
/
2
.

(4.2)

T
he

age
of

such
a
universe

is
given

by

t
0
=
t(0)

=
2

3
H

0
,

(4.3)

so
t(z)

=
t
0

(1
+
z)

3
/
2
.

(4.4)

For
t
0
=

13
.7

G
yr

and
z
=

6
.96,this

gives

t(6
.96) ∣∣∣∣∣ m

atter
only

=
13
.7

G
yr

(1
+
6
.96)

3
/
2
=

0
.610

G
yr.

(4.5)

T
hat

is,
t(z)

is
610

m
illion

years.

For
the

realistic
m
odel

based
on

the
W

M
A
P

5-year
recom

m
ended

values,
as

described
in

the
problem

,
the

integral
has

to
be

done
num

erically,
using

the
con-

version
1H
0
=

9
.778

h −
1
G
yr

,
(4.6)

w
here

H
0
=

100
h
km

s −
1M

pc −
1
,

(4.7)

w
ith

Ω
M

=
Ω

b
+

Ω
d
m

=
0
.0456

+
0
.228

=
0
.2736.

T
he

integrations
give

an
age

of
t
0
=

13
.71

G
yr

and
a
tim

e
of

em
ission

for
the

z
=

6
.96

galaxy
given

by

t(6
.96) ∣∣∣∣∣

W
M
A
P
5

param
eters

=
0
.784

G
yr.

(4.8)
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Y
ou

w
ere

not
asked

to
draw

a
graph,

but
num

erical
integration

using
the

W
M
A
P

5-year
recom

m
ended

param
eters

leads
to

the
follow

ing:

A
useful

specialcase
is
that

of
a
flat

universe
w
ith

m
atter

and
vacuum

energy,
so

Ω
R

=
Ω

K
=

0,
w
ith

Ω
Λ
=

1−
Ω

M
.
In

that
case

the
integral

can
also

be
done

analytically,w
ith

the
result

t(z) ∣∣∣∣∣ m
atter/vacuum

only
=

2
3
H

0 √
Ω

Λ

arcsinh [
√
Ω

Λ
√
Ω

M
(1

+
z)

3
/
2 ]

.
(4.9)

U
sing

the
W

M
A
P
5
values

for
Ω

M
and

H
0 ,

this
approxim

ation
gives

an
age

t
0
=

13
.72

G
yr

and
t(6

.96)
=

0
.786

G
yr,

w
hich

are
both

very
close

to
the

values
found

above
for

the
full

num
erical

integral.

∗Solution
w
ritten

by
A
lan

G
uth.

†Solution
w
ritten

by
C
arlos

Santana.


