

$$
\qquad \begin{array}{l}\hat{\boldsymbol{n}}^{2}(\theta, \phi)=\sin \theta \sin \phi \\ \qquad \begin{array}{c} \\ 3\end{array}(\theta, \phi)=\cos \theta\end{array}
$$

We can check that we have the right metric on the 4 -sphere by calculating the
relevant differentials while holding V fixed. Then where from 1 to 3 , so then More compactly, we can define a 3 -vector \mathbf{X}, with $X^{i} \equiv(X, Y, Z)$ as i runs $\varepsilon \cdot d$

$\underline{z}^{\iota-\mathrm{I}} \mathcal{N}^{p}=M$
(øI'L) $\left(\phi^{\prime} \theta\right) \boldsymbol{u}, \iota p=\mathbf{X}$ with $X^{i} \equiv(X, Y, Z)$ as i runs

Finally, we were asked to express r, θ, ϕ, and t in terms of X, Y, Z, W, and
V, which we can do by using Eqs. $(1.11),(1.13)$, and (1.22):

$(97 \cdot \mathrm{~L})$
$(97 \cdot \mathrm{~L})$

$$
a(t)=\sqrt{V^{2}+H^{-2}}=H^{-1} \cosh H t,
$$

where the full metric is then
and ${ }^{\imath}{ }^{\text {}} \mathrm{H}$ प पu!s ${ }_{\mathrm{L}-} H=\Lambda \quad$ os 20

әл!̣̊ от рәұелљəәұ!! әq шеэ Чэ!чм
$(\mp z \cdot \tau)$
$(\varepsilon 7 \cdot \tau)$
$\left(77^{\circ} \cdot \mathrm{L}\right)$

This will match the closed Robertson-Walker form that we are looking for if
8.952 PROBLEM SET 2 SOLUTIONS, SPRING 2009

$$
\begin{aligned}
\mathrm{d} V & =H \sqrt{H^{-2}-r^{2}} \cosh (H t) \mathrm{d} t-\frac{r \sinh H t}{\sqrt{H^{-2}-r^{2}}} \mathrm{~d} r \\
\mathrm{~d} W & =H \sqrt{H^{-2}-r^{2}} \sinh (H t) \mathrm{d} t-\frac{r \cosh H t}{\sqrt{H^{-2}-r^{2}}} \mathrm{~d} r \\
\mathrm{~d} \mathbf{X} & =\mathrm{d} r \hat{\boldsymbol{n}}+r \mathrm{~d} \hat{\boldsymbol{n}}
\end{aligned}
$$

${ }^{\prime}\left(\phi^{\prime} \theta\right) \underset{\sim}{u} \cdot \boldsymbol{X}$
so the natural parameterization is
8.952 PROBLEM SET 2 SOLUTIONS, SPRING 2009

$(\mathrm{I} \cdot \sigma) \quad \cdot(d+d \mathbf{\varepsilon}) \cap \Perp \nabla-=\frac{p}{p}$	
(¢G. ${ }^{\text {L }}$)	$\cdot\|M\|>\|\Lambda\|$ pue $0<M$

From Eqs. (1.48) we see that
which is exactly the desired metric.
($\cdot \square$)
$\cdot(d+d \mathbb{C}) \cap \boldsymbol{\nu} \boldsymbol{\nu}-=\frac{p}{p}$

 including all points out to the observer's horizon at $r=H^{-1}$. Thus the coordinate system covers only one quadrant of the $V-W$ plane. From
the final form of the metric, Eq. (1.52), one sees that the metric gives a con-
(8c. ${ }^{-}$)
$\left(Z G^{\cdot} T\right)$

:s! puy of ұием әм әи!̣ әчұ os ' $\left({ }_{*} z\right) \neq{ }_{*} \neq$ оs[е $!(0=z) \neq{ }^{0} \neq$ иәчұ
 $\varepsilon_{\varepsilon-} x^{N} \mho+\mathrm{v}_{\mho} \wedge x \quad{ }^{0}{ }^{0} H$
$(9 \cdot z) \quad \cdot \frac{\underline{\varepsilon-x^{N}} \mho+{ }^{V} \mho \wedge x}{x p} \int_{z+\tau}^{0} \frac{0}{\mathrm{~L}}=(z) \downarrow$
radiation, arriving to us with redshift z, was released is:
 the universe started, we just subtract the time we called t^{*} from the present age of In the end this evaluates to $z^{*}=0.817$. To find how long ago the acceleration of
 quantities in Eq. (2.4) that:
 But $\rho_{\Lambda}=\frac{3 H_{0}^{2}}{8 \pi G} \Omega_{\Lambda}$ and with $\frac{a_{0}}{a\left(t^{*}\right)}=1+z^{*}$, where z^{*} is the value of the redshift

So we can write the result of Eq. (2.2) as

write the energy density as a function of scale factor as (Weinberg 1.5.38): Now matter has $p_{M} \approx 0$, and vacuum energy has $p_{\Lambda}=-\rho_{\Lambda}$. Using this we can $\frac{\varepsilon}{(q) d}-=\left({ }_{*} \nmid\right) d \Leftarrow 0=\left({ }_{*} \nmid\right) d+\left({ }_{*} 7\right) d \S \Leftarrow 0=\frac{\left({ }_{* 7}\right) p}{\left.{ }_{* 7}\right) p}$ Let t^{*} be the time since the Big bang ($t=0$ here) at which the transition to
acceleration occured. Then
 $6 \cdot d$

so we are left with

 In the last equation, T is the kinetic energy of the system due to motion about its

Weinberg 1.9.3:

Thus $\delta t \approx\left(1 / H_{0}\right)(0.51) \approx 6.9 \mathrm{Gyr}$.

2

Here the value $1 / H_{0}$ is determined from the given age of 13.7 Gyr :
8.952 PROBLEM SET 2 SOLUTIONS, SPRING 2009
 $d=\theta d_{A}$ you get $d \approx \theta z / H_{0}$. Thus $M \propto 1 / H_{0}^{n}$. Even if we go to higher z, at which Since the transverse proper distance is related to the angular separation θ and d_{A} as

 statistical equilibrium the visible masses are representative sample of the virialized Doppler shifts in the spectra coming from the visible galaxies - assuming that in

cluster. It becomes $V_{\text {cluster }}=-(1 / 2) G M^{2}\left\langle\left(1 / r^{n}\right)\right\rangle$. Thus using the virial theorem
result we can find the total mass M of the cluster:
 of the cluster. A similar thing can be done with $V_{\text {cluster }}$ by considering the mass-
 One can get write the kinetic energy in terms of the mass-averaged square velocity
Here we used $\boldsymbol{r}_{l}=\sum_{i} X_{l}^{i} \hat{\boldsymbol{e}}_{i}$. So the virial theorem then takes the form

8.952 PROBLEM SET 2 SOLUTIONS, SPRING 2009
where $\hat{\boldsymbol{e}}_{i}$ is the unit vector along the i th direction. Multiplying by X_{q}^{i} and summing
over i and q we find:

\[\)| $\sum_{q, i} X_{q}^{i} \frac{\partial V_{\text {cluster }}}{\partial X_{q}^{i}}$ | $=\sum_{q, i, m \neq l} X_{q}^{i}\left[\frac{n}{2} \frac{G c_{m l}}{\left\|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right\|^{n+2}}\left(\boldsymbol{r}_{l}-\boldsymbol{r}_{m}\right) \cdot\left(\delta_{m}^{q}-\delta_{l}^{q}\right) \hat{\boldsymbol{e}}_{i}\right]$ |
| ---: | :--- |
| | $=\frac{n}{2} \sum_{m \neq l} \frac{G c_{m l}}{\left\|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right\|^{n+2}}\left(\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right) \cdot\left(\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right)$ |
| | $=n\left[\frac{1}{2} \sum_{m \neq l} \frac{G c_{m l}}{\left\|\boldsymbol{r}_{m}-\boldsymbol{r}_{l}\right\|^{n}}\right]$ |
| | $=-n V_{l}$ |

\]

with $\Omega_{M}=\Omega_{b}+\Omega_{\mathrm{dm}}=0.0456+0.228=0.2736$. The integrations give an age of
$t_{0}=13.71 \mathrm{Gyr}$ and a time of emission for the $z=6.96$ galaxy given by

әләчм
ио!̣s.əəл described in the problem, the integral has to be done numerically, using the con-

$(2 \cdot \pm)$	әләум	
(9* \dagger)	ио!̣s..əə	
(9^{\prime} \%		

 $\frac{{ }^{0} H}{\mathrm{I}}$
$(8 \cdot \theta)$

os

z/\&(z+1) ${ }^{0} H \varepsilon=(z) \downarrow$
giving

8.952 PROBLEM SET 2 SOLUTIONS, SPRING 2009

$Z I \cdot d$
${ }^{\dagger}$ Solution written by Carlos Santana.
*Solution written by Alan Guth.
above for the full numerical integral.
A useful special case is that of a flat universe with matter and vacuum energy,
so $\Omega_{R}=\Omega_{K}=0$, with $\Omega_{\Lambda}=1-\Omega_{M}$. In that case the integral can also be done
analytically, with the result

$$
\left.t(z)\right|_{\substack{\text { matter } / \text { vacuum } \\ \text { only }}}=\frac{2}{3 H_{0} \sqrt{\Omega_{\Lambda}}} \operatorname{arcsinh}\left[\frac{\sqrt{\Omega_{\Lambda}}}{\sqrt{\Omega_{M}}(1+z)^{3 / 2}}\right] \text {. }
$$

Using the WMAP5 values for Ω_{M} and H_{0}, this approximation gives an age $t_{0}=$
13.72 Gyr and $t(6.96)=0.786 \mathrm{Gyr}$, which are both very close to the values found

[^0]
[^0]: You were not asked to draw a graph, but numerical integration using the
 WMAP 5-year recommended parameters leads to the following:
 8.952 PROBLEM SET 2 SOLUTIONS, SPRING 2009

