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PROBLEM SET 3 SOLUTIONS

PROBLEM 1: DISTANCE TO A GALAXY AT z = 6.96 (10 points)∗

Summarizing the key formulas, the Robertson–Walker metric can be written
as

ds2 = −dt2 + a2(t)
{
dξ2 + S2

K(ξ)
(
dθ2 + sin2 θdφ2

)}
, (1.1)

where ξ is related to the frequently used coordinate r by

r = SK(ξ) ≡



sin ξ if K = 1
ξ if K = 0
sinh ξ if K = −1 .

(1.2)

If the redshift of the light that we now receive from a distant object is z, then its
radial coordinate ξ is given by

ξ(z) =
1

a(t0)H0

∫ 1

1/(1+z)

dx

x2
√
ΩΛ + ΩMx−3 + ΩRx−4 + ΩKx−2

, (1.3)

where
ΩK = 1−Ωtot = 1−ΩΛ − ΩM − ΩR . (1.4)

For K = ±1, the coefficient in Eq. (1.3) can be rewritten, giving

ξ(z) =

√
ΩK

−K

∫ 1

1/(1+z)

dx

x2
√
ΩΛ +ΩMx−3 +ΩRx−4 +ΩKx−2

. (1.5)

In terms of these quantities, the three definitions of distance — proper distance
d(z), luminosity distance dL(z), and angular diameter distance dA(z) — are given
by

d(z) = a(t0)ξ(z)

dL(z) = (1 + z) a(t0)SK

(
ξ(z)

)
dA(z) = (1 + z)−1 a(t0)SK

(
ξ(z)

)
,

(1.6)

where for K = ±1, a(t0) can be rewritten as

a(t0) =
1

H0

√−K

ΩK
. (1.7)

To continue, we use the WMAP 5-year recommended values: H0 = 70.5 km · s−1 ·
Mpc−1, ΩM = Ωb + Ωdm = 0.2736, ΩΛ = 0.726, and ΩR = 8.4 × 10−5. If these
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values are taken literally, then ΩK = 3.2× 10−4, but this number is consistent with
zero. One can proceed numerically either by using the K = −1 formulas or the
K = 0 formulas, and to three significant figures the results will agree:

d(6.96) = 28.8 GLYr = 8.83 Gpc

dL(6.96) = 229 GLYr = 70.3 Gpc

dA(6.96) = 3.62 GLYr = 1.11 Gpc,

(1.8)

where GLYr = giga-light-year, and Gpc = gigaparsec. Note that for a flat universe,
all three measures of distance are simply related:

dL(z) = (1 + z) d(z), dA(z) = (1 + z)−1 d(z) . (1.9)

You were not asked to do so, but it is interesting to graph the three measures
of distance vs. z, using the WMAP 5-year recommended values. For small z one
can put them on the same graph:

For larger z they are so different from each other that it is clearer to graph
them separately:
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PROBLEM 2: VELOCITY OF DISTANT GALAXIES (10 points)∗

Since the proper distance can be expressed as

d(t) = a(t) ξ , (2.1)

where ξ is the (time-independent) coordinate distance, one has the standard Hubble
velocity law,

v =
d
dt

d(t) =
da

dt
ξ =

(
1

a(t)
da

dt

) (
a(t) ξ

)
= H d(t) . (2.2)

For the Einstein–de Sitter model,

d(z) =
1

H0

∫ 1

1/(1+z)

dx

x2
√
ΩΛ + ΩMx−3 + ΩRx−4 + ΩKx−2

=
1

H0

∫ 1

1/(1+z)

dx

x1/2

=
2

H0

[
1− 1√

1 + z

]
,

(2.3)
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and therefore

v = 2
[
1− 1√

1 + z

]
. (2.4)

Alternatively, one can derive Eq. (2.4) by starting with

a(t) = βt2/3 (2.5)

for some constant β. Then a light pulse emitted at time te and received today
(t = t0) has traveled a proper distance

d = a(t0)
∫ t0

te

dt

a(t)
= 3t0

[
1−

(
te
t0

)1/3
]

. (2.6)

By using

H0 =
ȧ(t0)
a(t0)

=
2
3t0

(2.7)

and

1 + z =
a(t0)
a(te)

=
(

t0
te

)2/3

, (2.8)

one sees that Eq. (2.6) reproduces Eq. (2.3) and therefore (2.4).

From Eq. (2.4), v = 1 occurs at redshift

1 = 2
[
1− 1√

1 + z

]
=⇒ 1√

1 + z
=

1
2

=⇒ √
1 + z = 2 =⇒ z = 3 .

(2.9)

In general one has

v = H0 d(z) =
∫ 1

1/(1+z)

dx

x2
√
ΩΛ +ΩMx−3 +ΩRx−4 +ΩKx−2

, (2.10)

which for the WMAP 5-year recommended parameters and z = 6.96 integrates
numerically to give

v

c
= 2.076 . (2.11)
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Setting v = 1 in Eq. (2.10), one can solve it numerically to find that the speed of
light is achieved at

z = 1.412 . (2.12)

Again you were not asked to draw a graph for v vs. z, but it is interesting to
see such a graph. Using the WMAP 5-year parameters, one finds

PROBLEM 3: ANGULAR DIAMETER DISTANCE (10 points)†

For this problem we start with the formula for angular diameter distance given
in Weinberg (1.10.15):

dA(z) =
1

(1 + z)H0 Ω
1/2
K

sinh

[
Ω1/2

K

∫ 1

1/(1+z)

dx

x2
√
ΩΛ +ΩKx−2 + ΩMx−3 + ΩRx−4

]
.

(3.1)
In the Einstein-de Sitter model, ΩK = ΩΛ = ΩR = 0 and ΩM = 1. For the
expression above, we use the fact that for small ΩK (and representing the integral
above by f(ΩK , z) ):

sinh
(
Ω1/2

K f(ΩK , z)
)

Ω1/2
K

= f(0, z) + . . . . (3.2)
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Using this information, we can obtain the analyic expression for dA(z),

dA(z) =
1

(1 + z)H0
f(0, z) =

1
(1 + z)H0

∫ 1

1/(1+z)

dx

x2
√

x−3

=
1

(1 + z)H0

∫ 1

1/(1+z)

dx

x1/2

=
2

(1 + z)H0

[
1− 1√

1 + z

]
.

(3.3)

Computing the derivative with respect to z and finding the extremum, we find that

d′
A(z) =

1
H0

[
3

(1 + z)5/2
− 2

(1 + z)2

]
,

so d′
A(z

∗) = 0 =⇒ z∗ = 5/4.

(3.4)

Using the z∗ that we just found and putting it in our expression for dA(z) gives
dA(z∗) = 8

27H0
.

Now for the more realistic scenario, we use the WMAP 5-year recommended
values H0 = 70.5 km · s−1 ·Mpc−1, ΩM = Ωb + Ωdm = 0.2736, ΩΛ = 0.726, ΩR =
8.4× 10−5. Also curvature is negligible, so ΩK = 0. So our expression for angular
diameter distance becomes

dA(z) =
1

(1 + z)H0

∫ 1

1/(1+z)

dx

x2
√
ΩΛ + ΩMx−3 + ΩRx−4

. (3.5)

To find the maximum of this function, it has to be done numerically. Using the
Mathematica function FindRoot we can get the value of z that maximizes dA(z)
as z∗ ≈ 1.639. Putting this value back into dA(z) and evaluating the integral
numerically we obtain dA(z∗) ≈ 0.417/H0 ≈ 5.78 GLYr ≈ 1.773 Gpc.

PROBLEM 4: SAHA EQUATION (10 points)†

Let’s write for reference the Saha equation as written in Weinberg (2.3.6) and
(2.3.7),

X(1 + SX) = 1, (4.1)

where X = np/(np + n1s) is the fractional hydrogen ionization, and

S = 0.76nB

(
mekT

2πh̄2

)−3/2

exp (B1/kT ) . (4.2)
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Notice that in this problem, we are told to find the temperature T at which we
would obtain X = 1/2 under different values of the parameters. This will involve
solving the Saha equation numerically. In order to facilitate this, it is useful to use
the espression for S given in Weinberg (2.3.8):

S = 1.747× 10−22 e157894/T T 3/2 ΩBh2 . (4.3)

Here T is the temperature in degrees Kelvin and h is the Hubble constant in units
of 100 km · s−1 ·Mpc−1.

Now let’s proceed to the numerical solution. Again, the Mathematica function
FindRoot was used.

1. For the case of the original parameters given in Problem 1, the temperature
for X = 1/2 is T1/2 = 3738K.

2. For the case of having a mass of the electron me that is twice as large as the
real value — assuming the binding energy B1 stays constant — changes S by
a factor of 2−3/2. The result is that T1/2 = 3645K.

3. For the case of having a mass of the electron me that is half as large as the
real value — assuming the binding energy B1 stays constant — changes S by
a factor of (1/2)−3/2. The result is that T1/2 = 3836K.

4. For the case of having a binding energy B1 that is twice as large as the real
value, we obtain T1/2 = 7672K. Notice the jump in the temperature with
respect to the previous two cases. This sensitivity arises due to the exponential
dependence on the binding energy.

5. For the case of having a binding energy B1 that is half as large as the real
value, we obtain T1/2 = 1822K. Notice how much the universe must cool prior
to reaching X = 1/2!

6. Setting ΩB to be 10 times larger than the WMAP 5-year values, we find T1/2 =
3962K.

7. Setting ΩB to be 10 times smaller than the WMAP 5-year values, we find
T1/2 = 3538K.

∗Solution written by Alan Guth.
†Solution written by Carlos Santana.


