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E
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U
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A
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P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

3
S
O

L
U

T
IO

N
S

P
R

O
B

L
E
M

1:
D

IS
T
A

N
C

E
T

O
A

G
A

L
A

X
Y

A
T

z
=

6
.96

(10
points) ∗

Sum
m
arizing

the
key

form
ulas,

the
R
obertson–W

alker
m
etric

can
be

w
ritten

as
d
s
2
=

−
d
t
2
+

a
2(t) {d

ξ
2
+

S
2K
(ξ) (d

θ
2
+

sin
2
θd

φ
2 )}

,
(1.1)

w
here

ξ
is

related
to

the
frequently

used
coordinate

r
by

r
=

S
K
(ξ)≡ 

sin
ξ

if
K

=
1

ξ
if

K
=

0
sinh

ξ
if

K
=

−
1

.
(1.2)

If
the

redshift
of

the
light

that
w
e
now

receive
from

a
distant

ob
ject

is
z,

then
its

radial
coordinate

ξ
is

given
by

ξ(z)
=

1
a(t

0 )H
0 ∫

1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+

Ω
M

x −
3
+

Ω
R
x −

4
+

Ω
K

x −
2

,
(1.3)

w
here

Ω
K

=
1−

Ω
to

t
=

1−
Ω

Λ −
Ω

M
−

Ω
R

.
(1.4)

For
K

=
±
1,

the
coeffi

cient
in

E
q.

(1.3)
can

be
rew

ritten,
giving

ξ(z)
= √

Ω
K

−
K ∫

1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+
Ω

M
x −

3
+
Ω

R
x −

4
+
Ω

K
x −

2
.

(1.5)

In
term

s
of

these
quantities,

the
three

definitions
of

distance
—

proper
distance

d(z),
lum

inosity
distance

d
L (z),

and
angular

diam
eter

distance
d

A
(z)

—
are

given
by

d(z)
=

a(t
0 )ξ(z)

d
L (z)

=
(1

+
z)

a(t
0 )

S
K (ξ(z) )

d
A
(z)

=
(1

+
z) −

1
a(t

0 )
S

K (ξ(z) )
,

(1.6)

w
here

for
K

=
±
1,

a(t
0 )

can
be

rew
ritten

as

a(t
0 )

=
1H
0 √

−
K

Ω
K

.
(1.7)

T
o
continue,

w
e
use

the
W

M
A
P

5-year
recom

m
ended

values:
H

0
=

70
.5
km

·s −
1·

M
pc −

1,
Ω

M
=

Ω
b
+

Ω
d
m

=
0
.2736,

Ω
Λ

=
0
.726,

and
Ω

R
=

8
.4×

10 −
5.

If
these
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values
are

taken
literally,then

Ω
K

=
3
.2×

10 −
4,but

this
num

ber
is
consistent

w
ith

zero.
O
ne

can
proceed

num
erically

either
by

using
the

K
=

−
1
form

ulas
or

the
K

=
0
form

ulas,
and

to
three

significant
figures

the
results

w
illagree:

d(6
.96)

=
28

.8
G
LY

r
=

8
.83

G
pc

d
L (6

.96)
=

229
G
LY

r
=

70
.3

G
pc

d
A
(6

.96)
=

3
.62

G
LY

r
=

1
.11

G
pc,

(1.8)

w
here

G
LY

r
=

giga-light-year,and
G
pc

=
gigaparsec.

N
ote

that
for

a
flat

universe,
allthree

m
easures

of
distance

are
sim

ply
related:

d
L (z)

=
(1

+
z)

d(z),
d

A
(z)

=
(1

+
z) −

1
d(z)

.
(1.9)

Y
ou

w
ere

not
asked

to
do

so,
but

it
is

interesting
to

graph
the

three
m
easures

of
distance

vs.
z,

using
the

W
M
A
P

5-year
recom

m
ended

values.
For

sm
all

z
one

can
put

them
on

the
sam

e
graph:

For
larger

z
they

are
so

different
from

each
other

that
it

is
clearer

to
graph

them
separately:
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P
R

O
B

L
E
M

2:
V

E
L
O

C
IT

Y
O

F
D

IS
T
A

N
T

G
A

L
A

X
IE

S
(10

points) ∗

Since
the

proper
distance

can
be

expressed
as

d(t)
=

a(t)
ξ

,
(2.1)

w
here

ξ
is
the

(tim
e-independent)

coordinate
distance,one

has
the

standard
H
ubble

velocity
law

,

v
=

dd
t d(t)

=
d
ad
t

ξ
= (

1a(t)
d
ad
t )(a(t)

ξ )
=

H
d(t)

.
(2.2)

For
the

E
instein–de

Sitter
m
odel,

d(z)
=

1H
0 ∫

1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+

Ω
M

x −
3
+

Ω
R
x −

4
+

Ω
K

x −
2

=
1H
0 ∫

1

1
/
(1

+
z
)

d
x

x
1
/
2

=
2H
0 [1−

1
√
1
+

z ]
,

(2.3)
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and
therefore

v
=

2 [1−
1

√
1
+

z ]
.

(2.4)

A
lternatively,one

can
derive

E
q.(2.4)

by
starting

w
ith

a(t)
=

β
t
2
/
3

(2.5)

for
som

e
constant

β
.

T
hen

a
light

pulse
em

itted
at

tim
e

t
e
and

received
today

(t
=

t
0 )

has
traveled

a
proper

distance

d
=

a(t
0 ) ∫

t0

t
e

d
t

a(t)
=

3
t
0 [1− (

t
e

t
0 )

1
/
3 ]

.
(2.6)

B
y
using

H
0
=

ȧ(t
0 )

a(t
0 )

=
23
t
0

(2.7)

and

1
+

z
=

a(t
0 )

a(t
e )

= (
t
0

t
e )

2
/
3

,
(2.8)

one
sees

that
E
q.(2.6)

reproduces
E
q.(2.3)

and
therefore

(2.4).

From
E
q.(2.4),

v
=

1
occurs

at
redshift

1
=

2 [1−
1

√
1
+

z ]
=⇒

1
√
1
+

z
=

12

=⇒
√
1
+

z
=

2
=⇒

z
=

3
.

(2.9)

In
general

one
has

v
=

H
0
d(z)

= ∫
1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+
Ω

M
x −

3
+
Ω

R
x −

4
+
Ω

K
x −

2
,

(2.10)

w
hich

for
the

W
M
A
P

5-year
recom

m
ended

param
eters

and
z

=
6
.96

integrates
num

erically
to

give

vc
=

2
.076

.
(2.11)
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Setting
v
=

1
in

E
q.

(2.10),
one

can
solve

it
num

erically
to

find
that

the
speed

of
light

is
achieved

at

z
=

1
.412

.
(2.12)

A
gain

you
w
ere

not
asked

to
draw

a
graph

for
v
vs.

z,
but

it
is

interesting
to

see
such

a
graph.

U
sing

the
W

M
A
P

5-year
param

eters,
one

finds

P
R

O
B

L
E
M

3:
A

N
G

U
L
A

R
D

IA
M

E
T

E
R

D
IS

T
A

N
C

E
(10

points) †

For
this

problem
w
e
start

w
ith

the
form

ula
for

angular
diam

eter
distance

given
in

W
einberg

(1.10.15):

d
A
(z)

=
1

(1
+

z)H
0
Ω

1
/
2

K

sinh [Ω
1
/
2

K

∫
1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+
Ω

K
x −

2
+

Ω
M

x −
3
+

Ω
R
x −

4 ]
.

(3.1)
In

the
E
instein-de

Sitter
m
odel,

Ω
K

=
Ω

Λ
=

Ω
R

=
0
and

Ω
M

=
1.

For
the

expression
above,

w
e
use

the
fact

that
for

sm
all

Ω
K

(and
representing

the
integral

above
by

f(Ω
K

,z)
):

sinh (Ω
1
/
2

K
f(Ω

K
,z) )

Ω
1
/
2

K

=
f(0

,z)+
...

.
(3.2)
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U
sing

this
inform

ation,
w
e
can

obtain
the

analyic
expression

for
d

A
(z),

d
A
(z)

=
1

(1
+

z)H
0
f(0

,z)
=

1
(1

+
z)H

0 ∫
1

1
/
(1

+
z
)

d
x

x
2 √

x −
3

=
1

(1
+

z)H
0 ∫

1

1
/
(1

+
z
)

d
x

x
1
/
2

=
2

(1
+

z)H
0 [1−

1
√
1
+

z ]
.

(3.3)

C
om

puting
the

derivative
w
ith

respect
to

z
and

finding
the

extrem
um

,w
e
find

that

d ′A
(z)

=
1H
0 [

3
(1

+
z)

5
/
2 −

2
(1

+
z)

2 ]
,

so
d ′A

(z ∗)
=

0
=⇒

z ∗
=

5
/4

.

(3.4)

U
sing

the
z ∗

that
w
e
just

found
and

putting
it

in
our

expression
for

d
A
(z)

gives
d

A
(z ∗)

=
8

2
7
H

0 .

N
ow

for
the

m
ore

realistic
scenario,

w
e
use

the
W

M
A
P

5-year
recom

m
ended

values
H

0
=

70
.5
km

·s −
1·M

pc −
1,

Ω
M

=
Ω

b
+

Ω
d
m

=
0
.2736,

Ω
Λ
=

0
.726,

Ω
R
=

8
.4×

10 −
5.

A
lso

curvature
is

negligible,
so

Ω
K

=
0.

So
our

expression
for

angular
diam

eter
distance

becom
es

d
A
(z)

=
1

(1
+

z)H
0 ∫

1

1
/
(1

+
z
)

d
x

x
2 √

Ω
Λ
+

Ω
M

x −
3
+

Ω
R
x −

4
.

(3.5)

T
o
find

the
m
axim

um
of

this
function,

it
has

to
be

done
num

erically.
U
sing

the
M
athem

atica
function

F
indR

oot
w
e
can

get
the

value
of

z
that

m
axim

izes
d

A
(z)

as
z ∗

≈
1
.639.

P
utting

this
value

back
into

d
A
(z)

and
evaluating

the
integral

num
erically

w
e
obtain

d
A
(z ∗)≈

0
.417

/
H

0 ≈
5
.78

G
LY

r≈
1
.773

G
pc.

P
R

O
B

L
E
M

4:
S
A

H
A

E
Q

U
A

T
IO

N
(10

points) †

L
et’s

w
rite

for
reference

the
Saha

equation
as

w
ritten

in
W
einberg

(2.3.6)
and

(2.3.7),
X
(1

+
S

X
)
=

1
,

(4.1)

w
here

X
=

n
p /(n

p
+

n
1
s )

is
the

fractional
hydrogen

ionization,and

S
=

0
.76

n
B (

m
e k

T

2
π
h̄

2 )
−

3
/
2

exp
(B

1 /
k
T
)

.
(4.2)
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N
otice

that
in

this
problem

,
w
e
are

told
to

find
the

tem
perature

T
at

w
hich

w
e

w
ould

obtain
X

=
1
/2

under
different

values
of

the
param

eters.
T
his

w
ill

involve
solving

the
Saha

equation
num

erically.
In

order
to

facilitate
this,

it
is

useful
to

use
the

espression
for

S
given

in
W
einberg

(2.3.8):

S
=

1
.747×

10 −
2
2
e
1
5
7
8
9
4
/
T

T
3
/
2
Ω

B
h

2
.

(4.3)

H
ere

T
is

the
tem

perature
in

degrees
K
elvin

and
h
is

the
H
ubble

constant
in

units
of

100
km

·s −
1·M

pc −
1.

N
ow

let’s
proceed

to
the

num
ericalsolution.

A
gain,the

M
athem

atica
function

F
indR

oot
w
as

used.

1.
For

the
case

of
the

original
param

eters
given

in
P
roblem

1,
the

tem
perature

for
X

=
1
/2

is
T

1
/
2
=

3738
K
.

2.
For

the
case

of
having

a
m
ass

of
the

electron
m

e
that

is
tw

ice
as

large
as

the
real

value
—

assum
ing

the
binding

energy
B

1
stays

constant
—

changes
S

by
a
factor

of
2 −

3
/
2.

T
he

result
is

that
T

1
/
2
=

3645
K
.

3.
For

the
case

of
having

a
m
ass

of
the

electron
m

e
that

is
half

as
large

as
the

real
value

—
assum

ing
the

binding
energy

B
1
stays

constant
—

changes
S

by
a
factor

of
(1

/2) −
3
/
2.

T
he

result
is

that
T

1
/
2
=

3836
K
.

4.
For

the
case

of
having

a
binding

energy
B

1
that

is
tw

ice
as

large
as

the
real

value,
w
e
obtain

T
1
/
2
=

7672
K
.

N
otice

the
jum

p
in

the
tem

perature
w
ith

respect
to

the
previous

tw
o
cases.

T
his

sensitivity
arises

due
to

the
exponential

dependence
on

the
binding

energy.

5.
For

the
case

of
having

a
binding

energy
B

1
that

is
half

as
large

as
the

real
value,w

e
obtain

T
1
/
2
=

1822
K
.
N
otice

how
m
uch

the
universe

m
ust

coolprior
to

reaching
X

=
1
/2!

6.
Setting

Ω
B
to

be
10

tim
es

larger
than

the
W

M
A
P
5-year

values,w
e
find

T
1
/
2
=

3962
K
.

7.
Setting

Ω
B

to
be

10
tim

es
sm

aller
than

the
W

M
A
P

5-year
values,

w
e
find

T
1
/
2
=

3538
K
.

∗Solution
w
ritten

by
A
lan

G
uth.

†Solution
w
ritten

by
C
arlos

Santana.


