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PROBLEM SET 4 SOLUTIONS

PROBLEM 1: CANONICAL FORMULATION OF GEODESIC MO-
TION IN GENERAL RELATIVITY (15 points)†

(a) For this problem we start with the formula for the proper time along a trajectory
xµ(s) parametrized by s:

τ =
∫ s2

s1

√
−gµν

dxµ

ds

dxν

ds
ds. (1)

Taking the variation of τ with respect to xµ,

δτ =
∫ s2

s1

δ

√
−gµν

dxµ

ds

dxν

ds
ds

=
∫ s2

s1

1

2
√
−gµν

dxµ

ds
dxν

ds

(
−δgµν

dxµ

ds

dxν

ds
− 2gµν

dxµ

ds

dδxν

ds

)
ds

= −1
2

∫ s2

s1

(
1√
A

[
∂gµν

∂xλ

dxµ

ds

dxν

ds
δxλ

]
+

2√
A
gµν

dxµ

ds

dδxν

ds

)
ds.

(2)

The expression A = −gµν
dxµ

ds
dxν

ds
. Upon integrating by parts in (2) using the

condition that δxµ(s1) = δxµ(s2) = 0 , and extremizing by setting the variation of
τ to zero we find:

δτ = −1
2

∫ s2

s1

1√
A

[
∂gµν

∂xλ

dxµ

ds

dxν

ds
− 2

d

ds

(
gµλ

dxµ

ds

)]
δxλ ds

=⇒ δτ = 0 ∀ δxλ

=⇒ d

ds

(
1√
A
gµλ

dxµ

ds

)
=

1
2
√
A

∂gµν

∂xλ

dxµ

ds

dxν

ds
,

(3)

which is the desired expression.

(b) Now we choose the proper time τ as the parameter, so s = τ . This choice
sets A = 1. Using this fact in the result obtained in part (a), and expanding the
derivative in (3) we find:

d

dτ

(
gµλ

dxµ

dτ

)
=

1
2
∂gµν

∂xλ

dxµ

dτ

dxν

dτ

=⇒ dgµλ

dτ

dxµ

dτ
+ gλµ

d2xµ

dτ2
=

1
2
∂gµν

∂xλ

dxµ

dτ

dxν

dτ

=⇒ ∂gλµ

∂xα

dxα

dτ

dxµ

dτ
+ gλµ

d2xµ

dτ2
=

1
2
∂gµν

∂xλ

dxµ

dτ

dxν

dτ

(4)
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Solving for the second derivative of xµ with respect to τ and manipulating indices,

gλµ
d2xµ

dτ2
= −∂gλµ

∂xα

dxα

dτ

dxµ

dτ
+

1
2
∂gµν

∂xλ

dxµ

dτ

dxν

dτ

=⇒ gλµ
d2xµ

dτ2
= −

[
1
2

(
∂gλµ

∂xα
+
∂gλα

∂xµ
− ∂gµα

∂xλ

)]
dxµ

dτ

dxα

dτ

=⇒ d2xβ

dτ2
= −

[
1
2
gβλ

(
∂gλµ

∂xα
+
∂gλα

∂xµ
− ∂gµα

∂xλ

)]
dxµ

dτ

dxα

dτ

=⇒ d2xβ

dτ2
= −Γβ

µα

dxµ

dτ

dxα

dτ

(5)

Which is the conventional presentation of the geodesic equation.

(c) Starting out with the Lagrangian

L = −m
√

−gµν(xi, t)
dxµ

dt

dxν

dt
(6)

= −m
√
A (7)

= −m
√

−g00 − 2g0i
dxi

dt
− gij

dxi

dt

dxj

dt
(8)

and using the notation ẋi = dxi

dt
we can find the canonical momenta:

pi =
∂L

∂ẋi
(9)

=
m√
A

[
gi0 + gij

dxj

dt

]

=
m√
A

[
gi0
dx0

dt
+ gij

dxj

dt

]
. (10)

Now dτ =
√
Adt, so upon using the chain rule with dτ

dt =
√
A we quickly get:

pi = m

[
gi0
dx0

dτ
+ gij

dxj

dτ

]

=⇒ pi = mgiν
dxν

dτ

(11)

which are the spatial components of pµ = mgµν
dxν

dτ .
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(d) We can construct the Hamiltonian in the usual way:

H(xi, pi, t) = pi
dxi

dt
− L (12)

=
√
A

(
pi
dxi

dτ
+m

)
, (13)

where the chain rule and Eq. (7) were used. To relate this to p0, recall that p0 is
defined in terms of the canonical variables by

p2 = gµν(xi, t)pµpν = −m2 . (14)

Given Eq. (11) for pi, it is easily seen that Eq. (14) is satisfied if we set

p0 = mg0ν
dxν

dτ
, (15)

so
pµ = m

dxµ

dτ
(16)

for all µ, as usual. Eq. (13) can then be written

H(xi, pi, t) =
1
m

dτ

dt

(
pi p

i +m2
)
= − 1

m

dτ

dt

(
p0 p

0
)

= − 1
m

dτ

dt

(
p0m

dt

dτ

)
= −p0 ,

(17)

where we have used Eqs. (14) and (16).

(e) We can determine the form of Hamilton’s equations by differentiating the defin-
ing equation for p0, Eq. (14). Starting with the equation for ẋi = ∂H/∂pi,

∂

∂pi

[
gµνpµpν = −m2

]
=⇒ 2giνpν + 2g0ν ∂p0

∂pi
pν = 0

=⇒ pi + p0
∂p0
∂pi

= 0

=⇒ ẋi =
∂H

∂pi
= −∂p0

∂pi
=
pi

p0
.

(18)

Similarly for ṗi = −∂H/∂xi = ∂p0/∂x
i:

∂

∂xi

[
gµνpµpν = −m2

]
=⇒ ∂gµν

∂xi
pµpν + 2gµ0pµ

∂p0
∂xi

= 0

=⇒ p0 ṗi = −1
2
∂gµν

∂xi
pµpν .

(19)
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To put this into a more familiar form, we express the derivative of gµν in terms of
the derivative of its inverse, gµν :

∂gµν

∂xλ
= −gµα ∂gαβ

∂xλ
gβν . (20)

Eq. (19) then becomes

p0ṗi =
1
2
gµα ∂gαβ

∂xi
gβνpµpν =

1
2
∂gµν

∂xi
pµpν , (21)

where in the last step we have changed the names of the summation indices. To see
that this agrees with the expected result, simply replace each pµ using Eq. (16):

m
dt

dτ

d

dt

(
mgiν

dxν

dτ

)
=

1
2
m2 ∂gµν

∂xi

dxµ

dτ

dxν

dτ

=⇒ d

dτ

(
giλ
dxλ

dτ

)
=

1
2
∂gµν

∂xi

dxµ

dτ

dxν

dτ
,

(22)

which can easily be seen to agree with Eq. (3), where A is taken to be one.

PROBLEM 2: LORENTZ-INVARIANCE OF THE PHASE SPACE
VOLUME IN SPECIAL RELATIVITY (10 points)†

Start out with the definition of the phase space density N :

Number of particles = Ndx1dx2dx3dp1dp2dp3 (23)

Consider analyzing the system from two different inertial frames
(
x0, x1, x2, x3

)
and

(
x′0, x′1, x′2, x′3

)
. Since the number of particles in a phase space volume is a

physical quantity independent of the observer, we must have

Nd3xd3p = N ′d3x′d3p′ (24)

Now, we must find out how the the phase space volumes compare. Because of issues
of simultaneity in both frames (different x0 and x′0) the solution through a direct
Jacobian can be tricky. However, one can use the suggestion in the problem and
first consider the case when one of the frames is the rest frame of the particles.
Let the unprimed frame (x, p) be the rest frame and the primed frame (x′, p′) the
boosted frame. Then a volume d3x becomes Lorentz contracted in the boosted
frame, yielding the relation

d3x′ = (1/γ)d3x. (25)
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To relate the momentum volume element in the rest frame d3p with that in the
boosted frame d3p′, we can use the fact (used in Quantum Field Theory) that we
can get a Lorentz invariant spatial momentum volume element by integrating the
momentum four volume d4p over a delta function enforcing the mass shell constraint:

∫
d4p δ

(
pµpµ +m2

)
. . . =

∫
d3p

2
√

p2 +m2
. . . (26)

The last equation is obtained by integrating the delta function over p0. The Lorentz
invariant momentum measure is then d3p

2
√

p2+m2
If we compare the momentum vol-

ume measures as seen in the rest frame, d3p
2m

and in the boosted frame d3p′

2
√

p′2+m2
we

find upon using the Lorentz invariance of the this momentum measure:

d3p

2m
=

d3p′

2
√

p′2 +m2
(27)

=⇒ d3p′ =

√
p′2 +m2

m
d3p

=⇒ d3p′ = γ d3p. (28)

In the last line, the relation γ =
√

p′2 +m2/m was used. Combining (28) and (31)
gives

d3x′d3p′ = (1/γ)d3x γ d3p = d3x d3p (29)

To prove the equality for the case of two phase volumes in generic Lorentz frames
d3x′ d3p′ and d3x′′ d3p′′, you can use the fact that both frames are can be found from
boosts -with the appropriate γ factors- from the rest frame we just used. So all that
would be needed is to apply (32) for both generic frames, which straightforwardly
yields d3x′ d3p′ = d3x′′ d3p′′. Thus, the volumes cancel in (27) and we get:

N (xi, pi, t) = N ′(x′i, p′i, t
′) (30)

PROBLEM 3: GENERAL COORDINATE INVARIANCE OF THE
PHASE SPACE VOLUME IN GENERAL RELATIVITY (20
points)∗

(a) We are asked to show that the density of particles in an arbitrary space with
coordinates ξ1 , . . . , ξn can be written as

ρ(ξi, t) =
∑
α

∫
dλ δn

(
ξi − ξi

α(λ)
)
δ
(
t− tα(λ)

) dtα
dλ

. (31)
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To show this, we start with the claim that ρ(ξi, t) can be written as

ρ(ξi, t) =
∑
α

δn
(
ξi − ξi

α(t)
)
, (32)

where ξi
α(t) is the ξ

i-coordinate of the α′th particle at time t. To verify this claim,
note that the integral of this expression over an arbitrary volume is equal to the
number of particles in that volume, which is exactly how a density is defined. To
finish, recall that the delta function of a function of a variable can be evaluated by

δ
(
f(λ)

)
=

∑
k

δ(λ− λk)∣∣∣∣dfdλ (λk)
∣∣∣∣
, (33)

where the λk are the zeros of f(λ), which are assumed to be simple zeros.‡ Applying
this formula to f(λ) = t− tα(λ), one has

δ
(
t− tα(λ)

)
=
δ
(
λ− λα(t)

)
∣∣∣∣dtαdλ

(
λα(t)

)∣∣∣∣
, (34)

where λα(t) is the value of λ for which tα(λ) = t. If this expression for δ
(
t− tα(λ)

)
is substituted into Eq. (31), one can integrate over λ to obtain Eq. (32), assuming
that tα(λ) is a monotonically increasing function of λ.

(b) The trajectories in the primed system are given by

X ′µ(λ) = X ′µ
c

(
Xν

α(λ)
)
, (35)

so the density function in primed coordinates is given by

ρ′(ξ′i, t) =
∑
α

∫
dλ δn+1

(
X ′µ −X ′µ

c

(
Xν

α(λ)
)) dt′α

dλ
. (36)

We now change variables inside the (n + 1)-dimensional delta function, using the
(n+ 1)-dimensional generalization of Eq. (33):

δn+1
(
X ′µ −X ′µ

0

)
=

∣∣∣∣Det
(
∂Xµ

c

∂X ′ν

)∣∣∣∣ δn+1 (Xµ −Xµ
0 ) , (37)

‡ This formula is well-known to those who know it, but it seems hard to find it
in books. It is listed in the Wikipedia article on the “Dirac delta function,” and
it is given by J.D. Jackson in Classical Electrodynamics, 3rd Edition (Wiley,
1999), on p. 26. It can be verified by changing the variable of integration from λ to
z ≡ f(λ).
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where X ′µ
0 and Xµ

0 are a set of constants related by X ′µ
0 = X ′µ

c (Xν
0 ). (Later we will

let these “constants” depend on λ, and we will integrate over λ, but that does not
prevent us from treating them as constants here.) Eq. (37) is also considered well-
known by those who know it, but I have not been able to find it in print. (If you know
a place where it appears in print, please let me know!) It is of course fine if you used
it without explanation on your solutions, but for the sake of pedagogy I will show
how it follows from the Jacobian transformation of integration volumes, combined
with the fact that a delta function is really defined by the result of integrating with
a test function.

Specifically, if ϕ(Xµ) is a test function, then δn+1(Xµ −Xµ
0 ) can be defined

by ∫
dn+1X δn+1(Xµ −Xµ

0 ) ϕ (Xµ) ≡ ϕ (Xµ
0 ) . (38)

To change variables to X ′µ, we can start with the general relation
∫
dn+1X F (Xµ) =

∫
dn+1X ′

∣∣∣∣Det
(
∂Xµ

∂X ′ν

)∣∣∣∣ F (Xµ)|Xµ=Xµ
c (X′ν ) , (39)

where the vertical bar with the subscript indicates that F is to be evaluated at
the coordinates Xµ that correspond under the coordinate transformation to X ′ν .
Applying this general relation to the integral in Eq. (38),

ϕ (Xµ
0 ) =

∫
dn+1X δn+1(Xµ −Xµ

0 ) ϕ (Xµ) (40a)

=
∫
dn+1X ′

∣∣∣∣Det
(
∂Xµ

∂X ′ν

)∣∣∣∣ [
δn+1(Xµ −Xµ

0 ) ϕ (Xµ)
]∣∣

Xµ=Xµ
c (X′ν )

(40b)

=
∫
dn+1X ′ δn+1

(
X ′µ −X ′µ

0

)
ϕ (Xµ)|Xµ=Xµ

c (X′ν) , (40c)

where line (40c) is not obtained from the previous line, but rather by using the
definition of the delta function, as in Eq. (38), to show that the integral is equal to
ϕ (Xµ

0 ). By comparing line (40b) with line (40c), one sees that they agree if and
only if Eq. (37) is valid. The “only-if” part of this statement requires that we know
that line (40b) is equal to (40c) for all test functions ϕ, but that is the case. In a
more formal mathematical setting, the test functions would be required from the
beginning to belong to some specified class of well-behaved functions.

Using Eq. (37), Eq. (36) can be rewritten

ρ′(ξ′i, t) =
∑
α

∫
dλ

∣∣∣∣Det
(
∂Xµ

c

∂X ′ν

)∣∣∣∣ δn+1
(
Xµ −Xµ

α(λ)
) dt′α
dλ

. (41)
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To complete our task of expressing ρ′(ξ′i, t) in terms of ρ(ξi, t), as given by Eq. (31),
we need to rewrite dt′α

dλ . The rewriting is pretty simple, however, because as we follow
a given particle, the variables λ, t, and t′ are all redundant, with any one of them
determining the other two. Thus, we can write

dt′α
dλ

=
dt′α
dtα

dtα
dλ

. (42)

Furthermore, since the velocity of a particle is uniquely determined by its position
and time, dt′α

dtα
does not depend on which particle we are describing, but depends

only on the coordinates ξi and t. Thus, the factor dt′α
dtα

can be written as dt′
dt (ξ

i, t),
and taken outside the sum and integral. Finally, Eq. (41) can be rewritten as

ρ′(ξ′i, t) =
∣∣∣∣Det

(
∂Xµ

c

∂X ′ν

)∣∣∣∣ dt′

dt

∑
α

∫
dλ δn+1

(
Xµ −Xµ

α(λ)
) dtα
dλ

, (43)

which implies, making use of Eq. (31) and the convention that X i = ξi and X0 = t,
that

ρ′(ξ′i, t) =
∣∣∣∣Det

(
∂Xµ

c

∂X ′ν

)∣∣∣∣ dt′

dt
ρ(ξi, t) . (44)

The above formula is really the desired result, but when I made up the problem
set I did not notice that it could be written this simply. To make contact with the
formula given on the problem set, note that dt′

dt can be rewritten by expanding it
in the Xµ coordinates:

dt′

dt
=

∂t′c
∂Xµ

dXµ

dt
=
∂t′c
∂t

+
∂t′c
∂ξi

dξi

dt
. (45)

(c) I will evaluate the determinant in Eq. (44) by using Eq. (21) of the problem set,

Det
(
∂ξi

c

∂ξ′j

)
=
∂t′c
∂t

Det
(
∂Xµ

c

∂X ′ν

)
. (46)

However, the equations in the problem set express the primed coordinates in terms
of the unprimed, so I will use the fact that

Det
(
∂Xµ

c

∂X ′ν

)
=

[
Det

(
∂X ′µ

c

∂Xν

)]−1

. (47)
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This equation can be shown by noting that the matrices on the two sides are inverses
of each other. Eq. (46) can then be rewritten as

Det
(
∂Xµ

c

∂X ′ν

)
=

[
Det

(
∂X ′µ

c

∂Xν

)]−1

=

∂tc

∂t′

Det
(
∂ξ′ic
∂ξj

) . (48)

Note that Det
(

∂ξ′i
c

∂ξj

)
is the determinant of a 6 × 6 matrix that can be written in

block form as

Det
(
∂ξ′ic
∂ξj

)
= Det



∂x′i

∂xj

∂x′i

∂pj

∂p′i
∂xj

∂p′i
∂pj


. (49)

The key equations are given as Eq. (28) of the problem set:

t′ = x′0c (x
ν) ≡ t′c(x

ν) , (50a)

x′i = x′ic (x
ν) , (50b)

p′i =
∂xν

c

∂x′i
pν (50c)

=
∂xj

c

∂x′i
pj +

∂tc
∂x′i

p0(x1, x2, x3, p1, p2, p3, t) , (50d)

so I will start here. From Eq. (50b) we see that

∂x′i

∂xj
=
∂x′ic
∂xj

,
∂x′i

∂pj
= 0 . (51)

Given the block form of Eq. (49), the vanishing of ∂x′i/∂pj means that the upper
right 3× 3 block vanishes, and therefore the lower left block is irrelevant, and

Det
(
∂ξ′ic
∂ξj

)
= Det

(
∂x′i

∂xj

)
Det

(
∂p′i
∂pj

)
. (52)

The p′ derivatives can be calculated from Eq. (50d), giving

∂p′i
∂pj

=
∂xj

c

∂x′i
+
∂tc
∂x′i

∂p0
∂pj

=
∂xj

c

∂x′i
− ∂t

∂x′i
dxj

dt
,

(53)
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where in the last step I used the fact that p0 is the Hamiltonian, so its derivatives
are related to the time derivatives of the canonical variables.

To evaluate Eq. (52), we can use the fact that the determinant of the product
of two matrices is equal to the determinant of the product, so

Det
(
∂ξ′ic
∂ξk

)
= Det

(
∂x′i

∂xj

∂p′k
∂pj

)

= Det
∂x′ic
∂xj

(
∂xj

c

∂x′k
− ∂tc
∂x′k

dxj

dt

) .

(54)

To further simplify, we can make use of the fact that the spacetime coordinate trans-
formation does not depend on the momenta (although it does affect the momenta).
For that reason Eqs. (23–25) of the problem set can be written for the spacetime
coordinates alone:

∂ξ′ic
∂ξj

∂xj
c

∂x′k
= δi

k − ∂x′ic
∂t

∂tc
∂x′k

. (55)

∂t′c
∂xj

∂xj
c

∂x′k
= −∂t

′
c

∂t

∂tc
∂x′k

. (56)

∂t′c
∂xj

∂xj
c

∂t′
= 1− ∂t′c

∂t

∂tc
∂t′

. (57)

To evaluate the determinant in Eq. (54), we can expand the argument of the deter-
minant in the 2nd line and then use identity (55) on the first term, finding

Det
(
∂ξ′ic
∂ξk

)
= Det

δk
i − ∂tc

∂x′k

(
∂x′ic
∂t

+
∂x′i

∂xj

dxj

dt

) . (58)

The quantity in parentheses can be simplified as
(
∂x′ic
∂t

+
∂x′i

∂xj

dxj

dt

)
=

dx′i

dt
, (59)

where the total derivative dxi/dt refers to the derivative along the trajectory of the
particle, as in Eq. (45). Then

Det
(
∂ξ′ic
∂ξk

)
= Det

δk
i − ∂tc

∂x′k
dx′i

dt

 , (60)

which is ready for evaluation using the identity in Eq. (22) of the problem set,

Det (δi
j + u

ivj) = 1 + uivi . (61)
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Thus,

Det
(
∂ξ′ic
∂ξk

)
= 1− ∂tc

∂x′i
dx′i

dt
, (60)

which can be simplified by using the chain rule relation

∂tc
∂x′i

dx′i

dt
+
∂tc
∂t′

dt′

dt
=

∂tc
∂X ′µ

dX ′µ

dt
=

dt
dt

= 1 , (61)

so finally

Det
(
∂ξ′ic
∂ξk

)
=
∂tc
∂t′

dt′

dt
. (62)

By combining this result with Eqs. (44) and (48), one sees that

ρ′(ξ′i, t) = ρ(ξi, t) , (63)

which was the ultimate goal of this problem.

PROBLEM 4: SPECIFIC INTENSITY (10 points)∗

By the definition of specific intensity Iν , the energy dE hitting a detector of
area dA during a time dt, from a solid angle dΩ and within a frequency interval dν,
is given by

dE = Iν dA dt dΩdν . (64)

Since photons have energy hν, the number of photons is given by

dN =
dE
hν

=
Iν
hν

dA dt dΩdν . (65)

During the time interval dt the photons travel a distance d$ = c dt, and since they
hit a detector of area dA, the volume containing the photons is

d3x = d$ dA = c dt dA . (66)

The magnitude of the photon momentum is

p =
E

c
=
hν

c
, (67)

so the momentum space volume is

d3p = p2 dΩdp =
(
hν

c

)2

dΩ
(
h

c

)
dν . (68)
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Putting these results together,

dN =
Iν
hν

1
c

( c

hν

)2 ( c
h

)
d3x d3p =

c2

h4ν3
Iνd3x d3p =

c2

(2πh̄)4
Iν
ν3

d3x d3p . (69)

Thus, the phase space density is

Nγ =
c2

(2πh̄)4
Iν
ν3
, (70)

as claimed.

†Solution written by Carlos Santana.
∗Solution written by Alan Guth.


