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(a)
For

this
problem

w
e
start

w
ith

the
form

ula
for

the
proper

tim
e
along

a
trajectory

x
µ(s)

param
etrized

by
s:

τ
= ∫

s
2

s
1 √

−
g

µ
ν
d
x

µ

d
s

d
x

ν

d
s
d
s.

(1)

T
aking

the
variation

of
τ
w
ith

respect
to
x

µ,

δτ
= ∫

s
2

s
1

δ √
−
g

µ
ν
d
x

µ

d
s

d
x

ν

d
s
d
s

= ∫
s
2

s
1

1

2 √
−
g

µ
ν

d
x

µ

d
s

d
x

ν

d
s (−

δg
µ

ν
d
x

µ

d
s

d
x

ν

d
s

−
2
g

µ
ν
d
x

µ

d
s

d
δx

ν

d
s )

d
s

=
−
12 ∫

s
2

s
1

(
1√A [

∂
g

µ
ν

∂
x

λ

d
x

µ

d
s

d
x

ν

d
s
δx

λ ]
+

2√A
g

µ
ν
d
x

µ

d
s

d
δx

ν

d
s )

d
s.

(2)

T
he

expression
A

=
−
g

µ
ν

d
x

µ

d
s

d
x

ν

d
s
.

U
pon

integrating
by

parts
in

(2)
using

the
condition

that
δx

µ(s
1 )

=
δx

µ(s
2 )

=
0
,
and

extrem
izing

by
setting

the
variation

of
τ
to

zero
w
e
find:

δτ
=

−
12 ∫

s
2

s
1

1√A [
∂
g

µ
ν

∂
x

λ

d
x

µ

d
s

d
x

ν

d
s

−
2
dd
s (

g
µ

λ
d
x

µ

d
s )]

δx
λ
d
s

=⇒
δτ

=
0∀

δx
λ

=⇒
dd
s (

1√A
g

µ
λ
d
x

µ

d
s )

=
1

2 √
A

∂
g

µ
ν

∂
x

λ

d
x

µ

d
s

d
x

ν

d
s
,

(3)

w
hich

is
the

desired
expression.

(b
)
N
ow

w
e
choose

the
proper

tim
e
τ
as

the
param

eter,
so
s
=
τ.

T
his

choice
sets

A
=

1.
U
sing

this
fact

in
the

result
obtained

in
part

(a),
and

expanding
the

derivative
in

(3)
w
e
find:

dd
τ (

g
µ

λ
d
x

µ

d
τ )

=
12
∂
g

µ
ν

∂
x

λ

d
x

µ

d
τ

d
x

ν

d
τ

=⇒
d
g

µ
λ

d
τ

d
x

µ

d
τ

+
g

λ
µ
d
2x

µ

d
τ

2
=

12
∂
g

µ
ν

∂
x

λ

d
x

µ

d
τ

d
x

ν

d
τ

=⇒
∂
g

λ
µ

∂
x

α

d
x

α

d
τ

d
x

µ

d
τ

+
g

λ
µ
d
2x

µ

d
τ

2
=

12
∂
g

µ
ν

∂
x

λ

d
x

µ

d
τ

d
x

ν

d
τ

(4)
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Solving
for

the
second

derivative
of
x

µ
w
ith

respect
to
τ
and

m
anipulating

indices,

g
λ

µ
d
2x

µ

d
τ

2
=

−
∂
g

λ
µ

∂
x

α

d
x

α

d
τ

d
x

µ

d
τ

+
12
∂
g

µ
ν

∂
x

λ

d
x

µ

d
τ

d
x

ν

d
τ

=⇒
g

λ
µ
d
2x

µ

d
τ

2
=

− [
12 (

∂
g

λ
µ

∂
x

α
+
∂
g

λ
α

∂
x

µ
−
∂
g

µ
α

∂
x

λ )]
d
x

µ

d
τ

d
x

α

d
τ

=⇒
d
2x

β

d
τ

2
=

− [
12
g

β
λ (

∂
g

λ
µ

∂
x

α
+
∂
g

λ
α

∂
x

µ
−
∂
g

µ
α

∂
x

λ )]
d
x

µ

d
τ

d
x

α

d
τ

=⇒
d
2x

β

d
τ

2
=

−
Γ

βµ
α

d
x

µ

d
τ

d
x

α

d
τ

(5)

W
hich

is
the

conventional
presentation

of
the

geodesic
equation.

(c)
Starting

out
w
ith

the
L
agrangian

L
=

−
m √

−
g

µ
ν (x

i,t)
d
x

µ

d
t

d
x

ν

d
t

(6)

=
−
m
√
A

(7)

=
−
m √

−
g
0
0 −

2
g
0
i d
x

i

d
t
−
g

ij
d
x

i

d
t

d
x

j

d
t

(8)

and
using

the
notation

ẋ
i
=

d
x

i

d
t
w
e
can

find
the

canonical
m
om

enta:

p
i
=
∂
L

∂
ẋ

i
(9)

=
m√A [

g
i0
+
g

ij
d
x

j

d
t ]

=
m√A [

g
i0
d
x

0

d
t

+
g

ij
d
x

j

d
t ]

.
(10)

N
ow

d
τ
=

√
A
d
t,so

upon
using

the
chain

rule
w
ith

d
τd
t
=

√
A

w
e
quickly

get:

p
i
=
m [

g
i0
d
x

0

d
τ

+
g

ij
d
x

j

d
τ ]

=⇒
p

i
=
m
g

iν
d
x

ν

d
τ

(11)

w
hich

are
the

spatial
com

ponents
of
p

µ
=
m
g

µ
ν

d
x

ν

d
τ
.
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(d
)
W
e
can

construct
the

H
am

iltonian
in

the
usual

w
ay:

H
(x

i,p
i ,t)

=
p

i d
x

i

d
t
−
L

(12)

=
√
A (

p
i d
x

i

d
τ

+
m )

,
(13)

w
here

the
chain

rule
and

E
q.

(7)
w
ere

used.
T
o
relate

this
to
p
0 ,

recall
that

p
0
is

defined
in

term
s
of

the
canonical

variables
by

p
2
=
g

µ
ν(x

i,t)p
µ
p

ν
=

−
m

2
.

(14)

G
iven

E
q.

(11)
for

p
i ,
it
is

easily
seen

that
E
q.

(14)
is

satisfied
if
w
e
set

p
0
=
m
g
0
ν
d
x

ν

d
τ
,

(15)

so
p

µ
=
m
d
x

µ

d
τ

(16)

for
all
µ,

as
usual.

E
q.(13)

can
then

be
w
ritten

H
(x

i,p
i ,t)

=
1m

d
τd
t (p

i
p

i+
m

2 )
=

−
1m

d
τd
t (p

0
p
0 )

=
−

1m

d
τd
t (
p
0
m
d
t

d
τ )

=
−
p
0
,

(17)

w
here

w
e
have

used
E
qs.(14)

and
(16).

(e)
W
e
can

determ
ine

the
form

ofH
am

ilton’s
equations

by
differentiating

the
defin-

ing
equation

for
p
0 ,

E
q.(14).

Starting
w
ith

the
equation

for
ẋ

i
=
∂
H
/
∂
p

i ,

∂∂
p

i [g
µ

νp
µ
p

ν
=

−
m

2 ]
=⇒

2
g

iνp
ν
+

2
g
0
ν
∂
p
0

∂
p

i
p

ν
=

0

=⇒
p

i+
p
0
∂
p
0

∂
p

i
=

0

=⇒
ẋ

i=
∂
H

∂
p

i
=

−
∂
p
0

∂
p

i
=
p

i

p
0
.

(18)

Sim
ilarly

for
ṗ

i
=

−
∂
H
/
∂
x

i=
∂
p
0 /
∂
x

i:

∂∂
x

i [g
µ

νp
µ
p

ν
=

−
m

2 ]
=⇒

∂
g

µ
ν

∂
x

i
p

µ
p

ν
+

2
g

µ
0p

µ
∂
p
0

∂
x

i
=

0

=⇒
p
0
ṗ

i =
−
12
∂
g

µ
ν

∂
x

i
p

µ
p

ν
.

(19)
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T
o
put

this
into

a
m
ore

fam
iliar

form
,
w
e
express

the
derivative

of
g

µ
ν
in

term
s
of

the
derivative

of
its

inverse,
g

µ
ν :

∂
g

µ
ν

∂
x

λ
=

−
g

µ
α
∂
g

α
β

∂
x

λ
g

β
ν
.

(20)

E
q.(19)

then
becom

esp
0ṗ

i
=

12
g

µ
α
∂
g

α
β

∂
x

i
g

β
νp

µ
p

ν
=

12
∂
g

µ
ν

∂
x

i
p

µ
p

ν
,

(21)

w
here

in
the

last
step

w
e
have

changed
the

nam
es

ofthe
sum

m
ation

indices.
T
o
see

that
this

agrees
w
ith

the
expected

result,
sim

ply
replace

each
p

µ
using

E
q.(16):

m
d
t

d
τ

dd
t (
m
g

iν
d
x

ν

d
τ )

=
12
m

2
∂
g

µ
ν

∂
x

i

d
x

µ

d
τ

d
x

ν

d
τ

=⇒
dd
τ (

g
iλ
d
x

λ

d
τ )

=
12
∂
g

µ
ν

∂
x

i

d
x

µ

d
τ

d
x

ν

d
τ
,

(22)

w
hich

can
easily

be
seen

to
agree

w
ith

E
q.

(3),w
here

A
is

taken
to

be
one.

P
R

O
B

L
E
M

2:
L
O

R
E
N

T
Z
-IN

V
A

R
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N
C

E
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F
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H
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P
H

A
S
E

S
P
A

C
E

V
O

L
U

M
E
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S
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E
C
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L
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E
L
A

T
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(10
points) †

Start
out

w
ith

the
definition

of
the

phase
space

densityN
:

N
um

ber
of

particles
=

N
d
x

1d
x

2d
x

3d
p
1 d
p
2 d
p
3

(23)

C
onsider

analyzing
the

system
from

tw
o
different

inertial
fram

es (x
0,x

1,x
2,x

3 )
and (x ′0,x ′1,x ′2,x ′3 ).

Since
the

num
ber

of
particles

in
a
phase

space
volum

e
is

a
physical

quantity
independent

of
the

observer,
w
e
m
ust

have

N
d
3x
d
3p

=
N

′d
3x ′d

3p ′
(24)

N
ow

,w
e
m
ust

find
out

how
the

the
phase

space
volum

es
com

pare.
B
ecause

ofissues
of

sim
ultaneity

in
both

fram
es

(different
x

0
and

x ′0)
the

solution
through

a
direct

Jacobian
can

be
tricky.

H
ow

ever,
one

can
use

the
suggestion

in
the

problem
and

first
consider

the
case

w
hen

one
of

the
fram

es
is

the
rest

fram
e
of

the
particles.

L
et

the
unprim

ed
fram

e
(x
,p)

be
the

rest
fram

e
and

the
prim

ed
fram

e
(x ′,p ′)

the
boosted

fram
e.

T
hen

a
volum

e
d
3x

becom
es

L
orentz

contracted
in

the
boosted

fram
e,

yielding
the

relation
d
3x ′=

(1
/
γ)d

3x
.

(25)
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T
o
relate

the
m
om

entum
volum

e
elem

ent
in

the
rest

fram
e
d
3p

w
ith

that
in

the
boosted

fram
e
d
3p ′,

w
e
can

use
the

fact
(used

in
Q
uantum

F
ield

T
heory)

that
w
e

can
get

a
L
orentz

invariant
spatial

m
om

entum
volum

e
elem

ent
by

integrating
the

m
om

entum
four

volum
e
d
4p

over
a
delta

function
enforcing

the
m
ass

shellconstraint:

∫
d
4p
δ (p

µ
p

µ
+
m

2 )
...= ∫

d
3p

2 √
p

2
+
m

2
...

(26)

T
he

last
equation

is
obtained

by
integrating

the
delta

function
over

p
0 .

T
he

L
orentz

invariant
m
om

entum
m
easure

is
then

d
3
p

2 √
p

2
+

m
2
If

w
e
com

pare
the

m
om

entum
vol-

um
e
m
easures

as
seen

in
the

rest
fram

e,
d
3
p

2
m

and
in

the
boosted

fram
e

d
3
p ′

2 √
p

′2
+

m
2
w
e

find
upon

using
the

L
orentz

invariance
of

the
this

m
om

entum
m
easure:

d
3p

2
m

=
d
3p ′

2 √
p ′2

+
m

2
(27)

=⇒
d
3p ′= √

p ′2
+
m

2

m
d
3p

=⇒
d
3p ′=

γ
d
3p
.

(28)

In
the

last
line,the

relation
γ
= √

p ′2
+
m

2/
m

w
as

used.
C
om

bining
(28)

and
(31)

gives
d
3x ′d

3p ′=
(1
/
γ)d

3x
γ
d
3p

=
d
3x
d
3p

(29)

T
o
prove

the
equality

for
the

case
of

tw
o
phase

volum
es

in
generic

L
orentz

fram
es

d
3x ′d

3p ′and
d
3x ′′d

3p ′′,you
can

use
the

fact
that

both
fram

es
are

can
be

found
from

boosts
-w

ith
the

appropriate
γ
factors-

from
the

rest
fram

e
w
e
just

used.
So

allthat
w
ould

be
needed

is
to

apply
(32)

for
both

generic
fram

es,
w
hich

straightforw
ardly

yields
d
3x ′d

3p ′=
d
3x ′′d

3p ′′.
T
hus,

the
volum

es
cancel

in
(27)

and
w
e
get:

N
(x

i,p
i ,t)

=
N

′(x ′i,p ′i ,t ′)
(30)

P
R

O
B

L
E
M

3:
G

E
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E
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A
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C
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O
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D
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A
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L
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E
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E
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A
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R
E
L
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T
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Y

(20
points) ∗

(a)
W
e
are

asked
to

show
that

the
density

of
particles

in
an

arbitrary
space

w
ith

coordinates
ξ
1
,
...

,ξ
n
can

be
w
ritten

as

ρ(ξ
i,t)

= ∑
α ∫

d
λ
δ

n (ξ
i−

ξ
iα (λ) )

δ (t−
t
α (λ) )

d
t
α

d
λ
.

(31)
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T
o
show

this,w
e
start

w
ith

the
claim

that
ρ(ξ

i,t)
can

be
w
ritten

as

ρ(ξ
i,t)

= ∑
α

δ
n (ξ

i−
ξ

iα (t) )
,

(32)

w
here

ξ
iα (t)

is
the

ξ
i-coordinate

of
the

α
′th

particle
at

tim
e
t.

T
o
verify

this
claim

,
note

that
the

integral
of

this
expression

over
an

arbitrary
volum

e
is

equal
to

the
num

ber
of

particles
in

that
volum

e,
w
hich

is
exactly

how
a
density

is
defined.

T
o

finish,
recallthat

the
delta

function
of

a
function

of
a
variable

can
be

evaluated
by

δ (f(λ) )
= ∑

k

δ(λ−
λ

k )
∣∣∣∣ d
f

d
λ
(λ

k ) ∣∣∣∣
,

(33)

w
here

the
λ

k
are

the
zeros

of
f(λ),w

hich
are

assum
ed

to
be

sim
ple

zeros. ‡
A
pplying

this
form

ula
to
f(λ)

=
t−

t
α (λ),

one
has

δ (t−
t
α (λ) )

=
δ (λ−

λ
α (t) )

∣∣∣∣ d
t
α

d
λ (λ

α (t) ) ∣∣∣∣
,

(34)

w
here

λ
α (t)

is
the

value
of
λ
for

w
hich

t
α (λ)

=
t.

If
this

expression
for

δ (t−
t
α (λ) )

is
substituted

into
E
q.

(31),
one

can
integrate

over
λ
to

obtain
E
q.

(32),
assum

ing
that

t
α (λ)

is
a
m
onotonically

increasing
function

of
λ.

(b
)
T
he

trajectories
in

the
prim

ed
system

are
given

by

X
′µ(λ)

=
X

′µc (X
να (λ) )

,
(35)

so
the

density
function

in
prim

ed
coordinates

is
given

by

ρ ′(ξ ′i,t)
= ∑

α ∫
d
λ
δ

n
+

1 (
X

′µ−
X

′µc (X
να (λ) ) )

d
t ′α

d
λ
.

(36)

W
e
now

change
variables

inside
the

(n
+

1)-dim
ensional

delta
function,

using
the

(n
+
1)-dim

ensional
generalization

of
E
q.(33):

δ
n
+

1 (X
′µ−

X
′µ0 )

= ∣∣∣∣ D
et (

∂
X

µc

∂
X

′ν ) ∣∣∣∣
δ

n
+

1
(X

µ−
X

µ0
)
,

(37)

‡
T
his

form
ula

is
w
ell-know

n
to

those
w
ho

know
it,

but
it

seem
s
hard

to
find

it
in

books.
It

is
listed

in
the

W
ikipedia

article
on

the
“D

irac
delta

function,”
and

it
is

given
by

J.D
.
Jackson

in
C

lassical
E
lectro

d
y
n
am

ics,
3rd

E
dition

(W
iley,

1999),on
p.26.

It
can

be
verified

by
changing

the
variable

of
integration

from
λ
to

z≡
f(λ).
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w
here

X
′µ0

and
X

µ0
are

a
set

ofconstants
related

by
X

′µ0
=
X

′µc
(X

ν0 ).
(L

ater
w
e
w
ill

let
these

“constants”
depend

on
λ,

and
w
e
w
ill

integrate
over

λ,
but

that
does

not
prevent

us
from

treating
them

as
constants

here.)
E
q.

(37)
is

also
considered

w
ell-

know
n
by

those
w
ho

know
it,but

Ihave
not

been
able

to
find

it
in

print.
(Ifyou

know
a
place

w
here

it
appears

in
print,please

let
m
e
know

!)
It

is
ofcourse

fine
ifyou

used
it

w
ithout

explanation
on

your
solutions,

but
for

the
sake

of
pedagogy

I
w
ill

show
how

it
follow

s
from

the
Jacobian

transform
ation

of
integration

volum
es,

com
bined

w
ith

the
fact

that
a
delta

function
is
really

defined
by

the
result

ofintegrating
w
ith

a
test

function.

Specifically,
if
ϕ
(X

µ)
is

a
test

function,
then

δ
n
+

1(X
µ−

X
µ0
)
can

be
defined

by
∫
d

n
+

1X
δ

n
+

1(X
µ−

X
µ0 )
ϕ
(X

µ)≡
ϕ
(X

µ0
)
.

(38)

T
o
change

variables
to
X

′µ,
w
e
can

start
w
ith

the
general

relation
∫
d

n
+

1X
F
(X

µ)
= ∫

d
n
+

1X
′ ∣∣∣∣ D

et (
∂
X

µ

∂
X

′ν ) ∣∣∣∣
F
(X

µ)|X
µ
=

X
µc
(X

′ν
)
,

(39)

w
here

the
vertical

bar
w
ith

the
subscript

indicates
that

F
is

to
be

evaluated
at

the
coordinates

X
µ
that

correspond
under

the
coordinate

transform
ation

to
X

′ν.
A
pplying

this
general

relation
to

the
integral

in
E
q.

(38),

ϕ
(X

µ0
)
= ∫

d
n
+

1X
δ

n
+

1(X
µ−

X
µ0
)
ϕ
(X

µ)
(40a)

= ∫
d

n
+

1X
′ ∣∣∣∣ D

et (
∂
X

µ

∂
X

′ν ) ∣∣∣∣ [δ
n
+

1(X
µ−

X
µ0 )
ϕ
(X

µ) ] ∣∣X
µ
=

X
µc
(X

′ν
)

(40b)

= ∫
d

n
+

1X
′δ

n
+

1 (X
′µ−

X
′µ0 )

ϕ
(X

µ)|X
µ
=

X
µc
(X

′ν
)
,

(40c)

w
here

line
(40c)

is
not

obtained
from

the
previous

line,
but

rather
by

using
the

definition
of

the
delta

function,
as

in
E
q.(38),to

show
that

the
integralis

equalto
ϕ
(X

µ0 ).
B
y
com

paring
line

(40b)
w
ith

line
(40c),

one
sees

that
they

agree
if
and

only
ifE

q.(37)
is
valid.

T
he

“only-if”
part

ofthis
statem

ent
requires

that
w
e
know

that
line

(40b)
is

equal
to

(40c)
for

all
test

functions
ϕ
,
but

that
is

the
case.

In
a

m
ore

form
al

m
athem

atical
setting,

the
test

functions
w
ould

be
required

from
the

beginning
to

belong
to

som
e
specified

class
of

w
ell-behaved

functions.

U
sing

E
q.

(37),E
q.(36)

can
be

rew
ritten

ρ ′(ξ ′i,t)
= ∑

α ∫
d
λ ∣∣∣∣ D

et (
∂
X

µc

∂
X

′ν ) ∣∣∣∣
δ

n
+

1 (X
µ−

X
µα
(λ) )

d
t ′α

d
λ
.

(41)
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T
o
com

plete
our

task
ofexpressing

ρ ′(ξ ′i,t)
in

term
s
of
ρ(ξ

i,t),as
given

by
E
q.(31),

w
e
need

to
rew

rite
d
t ′α

d
λ
.
T
he

rew
riting

is
pretty

sim
ple,how

ever,because
as

w
e
follow

a
given

particle,
the

variables
λ,
t,

and
t ′
are

all
redundant,

w
ith

any
one

of
them

determ
ining

the
other

tw
o.

T
hus,

w
e
can

w
rite

d
t ′α

d
λ

=
d
t ′α

d
t
α

d
t
α

d
λ
.

(42)

Furtherm
ore,

since
the

velocity
of

a
particle

is
uniquely

determ
ined

by
its

position
and

tim
e,

d
t ′α

d
t
α

does
not

depend
on

w
hich

particle
w
e
are

describing,
but

depends

only
on

the
coordinates

ξ
i
and

t.
T
hus,

the
factor

d
t ′α

d
t
α
can

be
w
ritten

as
d
t ′

d
t (ξ

i,t),
and

taken
outside

the
sum

and
integral.

F
inally,E

q.(41)
can

be
rew

ritten
as

ρ ′(ξ ′i,t)
= ∣∣∣∣ D

et (
∂
X

µc

∂
X

′ν ) ∣∣∣∣
d
t ′

d
t ∑

α ∫
d
λ
δ

n
+

1 (X
µ−

X
µα
(λ) )

d
t
α

d
λ
,

(43)

w
hich

im
plies,m

aking
use

ofE
q.(31)

and
the

convention
that

X
i
=
ξ

i
and

X
0
=
t,

that

ρ ′(ξ ′i,t)
= ∣∣∣∣ D

et (
∂
X

µc

∂
X

′ν ) ∣∣∣∣
d
t ′

d
t
ρ(ξ

i,t)
.

(44)

T
he

above
form

ula
is

really
the

desired
result,

but
w
hen

I
m
ade

up
the

problem
set

I
did

not
notice

that
it
could

be
w
ritten

this
sim

ply.
T
o
m
ake

contact
w
ith

the
form

ula
given

on
the

problem
set,

note
that

d
t ′

d
t
can

be
rew

ritten
by

expanding
it

in
the

X
µ
coordinates:

d
t ′

d
t
=

∂
t ′c

∂
X

µ

d
X

µ

d
t

=
∂
t ′c

∂
t
+
∂
t ′c

∂
ξ

i d
ξ

i

d
t
.

(45)

(c)
I
w
illevaluate

the
determ

inant
in

E
q.(44)

by
using

E
q.(21)

ofthe
problem

set,

D
et (

∂
ξ

ic

∂
ξ ′j )

=
∂
t ′c

∂
t

D
et (

∂
X

µc

∂
X

′ν )
.

(46)

H
ow

ever,the
equations

in
the

problem
set

express
the

prim
ed

coordinates
in

term
s

of
the

unprim
ed,

so
I
w
illuse

the
fact

that

D
et (

∂
X

µc

∂
X

′ν )
= [

D
et (

∂
X

′µc

∂
X

ν )]−
1

.
(47)
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T
his

equation
can

be
show

n
by

noting
that

the
m
atrices

on
the

tw
o
sides

are
inverses

of
each

other.
E
q.(46)

can
then

be
rew

ritten
as

D
et (

∂
X

µc

∂
X

′ν )
= [

D
et (

∂
X

′µc

∂
X

ν )]−
1

=

∂
t
c

∂
t ′

D
et (

∂
ξ ′ic

∂
ξ

j )
.

(48)

N
ote

that
D
et (

∂
ξ ′ic

∂
ξ

j )
is

the
determ

inant
of

a
6×

6
m
atrix

that
can

be
w
ritten

in
block

form
as

D
et (

∂
ξ ′ic

∂
ξ

j )
=

D
et 

∂
x ′i

∂
x

j

∂
x ′i

∂
p

j

∂
p ′i

∂
x

j

∂
p ′i

∂
p

j 
.

(49)

T
he

key
equations

are
given

as
E
q.(28)

of
the

problem
set:

t ′
=
x ′0c

(x
ν)≡

t ′c (x
ν)
,

(50a)

x ′i=
x ′ic (x

ν)
,

(50b)

p ′i
=
∂
x

νc

∂
x ′i p

ν
(50c)

=
∂
x

jc

∂
x ′i p

j
+
∂
t
c

∂
x ′i p

0 (x
1,x

2,x
3,p

1 ,p
2 ,p

3 ,t)
,

(50d)

so
I
w
ill

start
here.

From
E
q.(50b)

w
e
see

that

∂
x ′i

∂
x

j
=
∂
x ′ic

∂
x

j
,

∂
x ′i

∂
p

j
=

0
.

(51)

G
iven

the
block

form
of

E
q.

(49),
the

vanishing
of
∂
x ′i/

∂
p

j
m
eans

that
the

upper
right

3×
3
block

vanishes,
and

therefore
the

low
er

left
block

is
irrelevant,

and

D
et (

∂
ξ ′ic

∂
ξ

j )
=

D
et (

∂
x ′i

∂
x

j )
D
et (

∂
p ′i

∂
p

j )
.

(52)

T
he
p ′

derivatives
can

be
calculated

from
E
q.

(50d),giving

∂
p ′i

∂
p

j
=
∂
x

jc

∂
x ′i

+
∂
t
c

∂
x ′i
∂
p
0

∂
p

j

=
∂
x

jc

∂
x ′i −

∂
t

∂
x ′i d

x
j

d
t
,

(53)
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w
here

in
the

last
step

I
used

the
fact

that
p
0
is

the
H
am

iltonian,
so

its
derivatives

are
related

to
the

tim
e
derivatives

of
the

canonical
variables.

T
o
evaluate

E
q.(52),w

e
can

use
the

fact
that

the
determ

inant
of

the
product

of
tw

o
m
atrices

is
equal

to
the

determ
inant

of
the

product,
so

D
et (

∂
ξ ′ic

∂
ξ

k )
=

D
et (

∂
x ′i

∂
x

j

∂
p ′k

∂
p

j )

=
D
et 

∂
x ′ic

∂
x

j (
∂
x

jc

∂
x ′k −

∂
t
c

∂
x ′k

d
x

j

d
t ) 

.

(54)

T
o
further

sim
plify,w

e
can

m
ake

use
ofthe

fact
that

the
spacetim

e
coordinate

trans-
form

ation
does

not
depend

on
the

m
om

enta
(although

it
does

affect
the

m
om

enta).
For

that
reason

E
qs.

(23–25)
of

the
problem

set
can

be
w
ritten

for
the

spacetim
e

coordinates
alone:

∂
ξ ′ic

∂
ξ

j

∂
x

jc

∂
x ′k

=
δ

ik −
∂
x ′ic

∂
t

∂
t
c

∂
x ′k

.
(55)

∂
t ′c

∂
x

j

∂
x

jc

∂
x ′k

=
−
∂
t ′c

∂
t

∂
t
c

∂
x ′k

.
(56)

∂
t ′c

∂
x

j

∂
x

jc

∂
t ′

=
1−

∂
t ′c

∂
t

∂
t
c

∂
t ′
.

(57)

T
o
evaluate

the
determ

inant
in

E
q.(54),w

e
can

expand
the

argum
ent

ofthe
deter-

m
inant

in
the

2nd
line

and
then

use
identity

(55)
on

the
first

term
,
finding

D
et (

∂
ξ ′ic

∂
ξ

k )
=

D
et 

δ
ki −

∂
t
c

∂
x ′k (

∂
x ′ic

∂
t

+
∂
x ′i

∂
x

j

d
x

j

d
t ) 

.
(58)

T
he

quantity
in

parentheses
can

be
sim

plified
as

(
∂
x ′ic

∂
t

+
∂
x ′i

∂
x

j

d
x

j

d
t )

=
d
x ′i

d
t
,

(59)

w
here

the
totalderivative

d
x

i/d
t
refers

to
the

derivative
along

the
trajectory

ofthe
particle,

as
in

E
q.

(45).
T
hen

D
et (

∂
ξ ′ic

∂
ξ

k )
=

D
et 

δ
ki −

∂
t
c

∂
x ′k

d
x ′i

d
t 

,
(60)

w
hich

is
ready

for
evaluation

using
the

identity
in

E
q.

(22)
of

the
problem

set,

D
et(δ

ij
+
u

iv
j )

=
1
+
u

iv
i
.

(61)
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T
hus,

D
et (

∂
ξ ′ic

∂
ξ

k )
=

1−
∂
t
c

∂
x ′i d

x ′i

d
t
,

(60)

w
hich

can
be

sim
plified

by
using

the
chain

rule
relation

∂
t
c

∂
x ′i d

x ′i

d
t

+
∂
t
c

∂
t ′ d

t ′

d
t
=

∂
t
c

∂
X

′µ
d
X

′µ

d
t

=
d
t

d
t
=

1
,

(61)

so
finally

D
et (

∂
ξ ′ic

∂
ξ

k )
=
∂
t
c

∂
t ′ d

t ′

d
t
.

(62)

B
y
com

bining
this

result
w
ith

E
qs.(44)

and
(48),one

sees
that

ρ ′(ξ ′i,t)
=
ρ(ξ

i,t)
,

(63)

w
hich

w
as

the
ultim

ate
goalof

this
problem

.

P
R

O
B

L
E
M

4:
S
P

E
C

IF
IC

IN
T

E
N

S
IT

Y
(10

points) ∗

B
y
the

definition
of

specific
intensity

I
ν ,

the
energy

d
E

hitting
a
detector

of
area

d
A

during
a
tim

e
d
t,from

a
solid

angle
dΩ

and
w
ithin

a
frequency

intervald
ν,

is
given

by
d
E

=
I
ν
d
A
d
tdΩ

d
ν
.

(64)

Since
photons

have
energy

h
ν,

the
num

ber
of

photons
is

given
by

d
N

=
d
Eh
ν

=
I
ν

h
ν
d
A
d
tdΩ

d
ν
.

(65)

D
uring

the
tim

e
interval

d
t
the

photons
travel

a
distance

d
$
=
cd
t,
and

since
they

hit
a
detector

of
area

d
A
,
the

volum
e
containing

the
photons

is

d
3x

=
d
$d
A

=
cd
td
A
.

(66)

T
he

m
agnitude

of
the

photon
m
om

entum
is

p
=
Ec

=
h
νc
,

(67)

so
the

m
om

entum
space

volum
e
is

d
3p

=
p
2
dΩ

d
p
= (

h
νc )

2

dΩ (
hc )

d
ν
.

(68)
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P
utting

these
results

together,

d
N

=
I
ν

h
ν

1c (
ch
ν )

2 (
ch )

d
3x

d
3p

=
c
2

h
4ν

3
I
ν d

3x
d

3p
=

c
2

(2
π
h̄)

4

I
ν

ν
3
d

3x
d

3p
.

(69)

T
hus,

the
phase

space
density

isN
γ
=

c
2

(2
π
h̄)

4

I
ν

ν
3
,

(70)

as
claim

ed.

†Solution
w
ritten

by
C
arlos

Santana.
∗Solution

w
ritten

by
A
lan

G
uth.


