

Physics 8.952: Particle Physics of the Early Universe May 17, 2009
Prof. Alan Guth


ХЮОТОNHOGL HO GLOLILSNI SLLASOHOVSSVN

Solving for the second derivative of $x^{\mu}$ with respect to $\tau$ and manipulating indices,



$$
\cdot x_{\varepsilon} p(\curlywedge / \tau)=x_{\varepsilon} p
$$


 first consider the case when one of the frames is the rest frame of the particles.

 Now, we must find out how the the phase space volumes compare. Because of issues

## (†て) $\quad d_{\S} p x_{\ell} p_{1} \mathcal{N}=d_{\S} p x_{\varepsilon} p \mathcal{N}$

physical quantity independent of the observer, we must have and $\left(x^{\prime 0}, x^{11}, x^{\prime 2}, x^{\prime 3}\right)$. Since the number of particles in a phase space volume is a






ing equation for $p_{0}$, Eq. (14). Starting with the equation for $\dot{x}^{i}=\partial H / \partial p_{i}$, (e) We can determine the form of Hamilton's equations by differentiating the defin-
$\cdot$ (9I) pue (дт) 'sb島 pəsn әлеч әм әләчм $\left(\frac{\lfloor p}{\not p} u^{0} d\right) \frac{\not p}{\iota p} \frac{u}{\mathrm{~L}}-=$


## $\left({ }_{0}{ }^{d} d\right) \frac{\not p}{\Delta p} \frac{u}{\mathrm{I}}-$


that this agrees with the expected result, simply replace each $p^{\mu}$ using Eq. (16): where in the last step we have changed the names of the summation indices. To see

$\varepsilon \cdot d$

Given Eq. (11) for $p_{i}$, it is easily seen that Eq. (14) is satisfied if we set

defined in terms of the canonical variables by where the chain rule and Eq. (7) were used. To relate this to $p_{0}$, recall that $p_{0}$ is $\qquad$

8.952 PROBLEM SET 4 SOLUTIONS, SPRING 2009

 ume measures as seen in the rest frame, $\frac{p}{2 m}$ and in the boosted frame $\frac{2 \sqrt{\boldsymbol{p}^{\prime 2}+m^{2}}}{}$ e invariant momentum measure is then $\frac{d^{3} p}{2 \sqrt{p^{2}+m^{2}}}$ If we compare the momentum vol-

(97) $\quad \cdots \frac{z^{z} u+{ }_{z} d /}{d_{\ell} p} \int=\cdots\left({ }_{z} u+{ }^{n} d_{\not r} d\right) \rho d_{\mp} p \int$
(97) $\cdots \frac{{ }_{z} w+{ }_{z} \boldsymbol{d} /{ }^{\wedge}}{d_{\S} p} \int=\cdots\left({ }_{z} w+{ }^{n} d_{r 1} d\right) \rho d_{\mp} p \int$




$z \equiv f(\lambda)$.




## 

 $(n+1)$-dimensional generalization of Eq. (33): We now change variables inside the $(n+1)$-dimensional delta function, using the
## 

so the density function in primed coordinates is given by

## ' $\left((Y)_{{ }_{\imath}}^{0} X\right)_{r_{1} X}{ }^{2}=(Y)_{r_{1} X}$

(b) The trajectories in the primed system are given by
that $t_{\alpha}(\lambda)$ is a monotonically increasing function of $\lambda$.

 $\left|\left((7)^{D} Y\right) \frac{Y p}{{ }^{{ }^{7}} \mathrm{p}}\right|$

## $\frac{\left.\mid(7)^{X} Y-Y\right) \rho}{}=\left((Y)^{D} Z-7\right) \rho$

this formula to $f(\lambda)=t-t_{\alpha}(\lambda)$, one has
where the $\lambda_{k}$ are the zeros of $f(\lambda)$, which are assumed to be simple zeros. ${ }^{\ddagger}$ Applying


## $\frac{f \rho}{\left({ }^{\gamma} Y-Y\right) \rho} \Xi=((Y) f) \rho$






beginning to belong to some specified class of well-behaved functions. more formal mathematical setting, the test functions would be required from the that line (40b) is equal to (40c) for all test functions $\varphi$, but that is the case. In a only if Eq. (37) is valid. The "only-if" part of this statement requires that we know $\varphi\left(X_{0}^{\mu}\right)$. By comparing line (40b) with line (40c), one sees that they agree if and definition of the delta function, as in Eq. (38), to show that the integral is equal to where line ( 40 c ) is not obtained from the previous line, but rather by using the

Applying this general relation to the integral in Eq. (38), the coordinates $X^{\mu}$ that correspond under the coordinate transformation to $X^{\prime \nu}$. where the vertical bar with the subscript indicates that $F$ is to be evaluated at

 (88) $\cdot\left({ }_{n}^{0} X\right)$ の $\equiv\left({ }_{r} X\right)$ の $\left({ }_{r}^{0} X-{ }_{H} X\right)_{\mathrm{I}+u} \rho X_{\mathrm{I}+u} p \int$
sq
 -uoṭวunf 75ə e


 a place where it appears in print, please let me know!) It is of course fine if you used known by those who know it, but I have not been able to find it in print. (If you know prevent us from treating them as constants here.) Eq. (37) is also considered welllet these "constants" depend on $\lambda$, and we will integrate over $\lambda$, but that does not where $X_{0}^{\prime \mu}$ and $X_{0}^{\mu}$ are a set of constants related by $X_{0}^{\prime \mu}=X_{c}^{\prime \mu}\left(X_{0}^{\nu}\right)$. (Later we will
8.952 PROBLEM SET 4 SOLUTIONS, SPRING 2009

$\operatorname{Det}\left(\delta_{j}^{i}+u^{i} v_{j}\right)=1+u^{i} v_{i}$.




## 1




## 









## 




 Given the block form of Eq. (49), the vanishing of $\partial x^{i}$


## $\frac{}{{ }_{2}, ~} x \varrho$

 ( Lg )(๕)


-

The key equations are given as Eq. (28) of the problem set:





$\frac{\partial x_{c}^{j}}{\partial x^{\prime i}}+\frac{\partial t_{c}}{\partial x^{\prime \prime}} \frac{\partial p_{0}}{\partial p_{j}}$
$=\frac{\partial x_{c}^{j}}{\partial x^{\prime i}}-\frac{\partial t}{\partial x^{\prime i}} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} t}$
-




