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PROBLEM SET 4 SOLUTIONS

PROBLEM 1: CANONICAL FORMULATION OF GEODESIC MO-
TION IN GENERAL RELATIVITY (15 points)t

(a) For this problem we start with the formula for the proper time along a trajectory
z#(s) parametrized by s:
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The expression A = —g,, &M@: gM@ . Upon integrating by parts in (2) using the
condition that dx#(s1) = dx*(s2) = 0, and extremizing by setting the variation of
T to zero we find:
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which is the desired expression.

(b) Now we choose the proper time 7 as the parameter, so s = 7. This choice
sets A = 1. Using this fact in the result obtained in part (a), and expanding the
derivative in (3) we find:
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Solving for the second derivative of z* with respect to 7 and manipulating indices,
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Which is the conventional presentation of the geodesic equation.

(c) Starting out with the Lagrangian
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and using the notation 3¢ = &MM we can find the canonical momenta:
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Now dr = v/Adt, so upon using the chain rule with m|m = VA we quickly get:
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which are the spatial components of p, = mg,.
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(d) We can construct the Hamiltonian in the usual way:
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where the chain rule and Eq. (7) were used. To relate this to pg, recall that pg is
defined in terms of the canonical variables by

P’ = g" (2", )pupy = —m> . (14)

Given Eq. (11) for p;, it is easily seen that Eq. (14) is satisfied if we set
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for all i, as usual. Eq. (13) can then be written
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where we have used Eqs. (14) and (16).

(e) We can determine the form of Hamilton’s equations by differentiating the defin-

ing equation for py, Eq. (14). Starting with the equation for &' = OH/0p;,
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To put this into a more familiar form, we express the derivative of g"” in terms of
the derivative of its inverse, g,

g™ 99asp
= —gh® A 20
aex = 9 g Y (20)
Eq. (19) then becomes
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where in the last step we have changed the names of the summation indices. To see
that this agrees with the expected result, simply replace each p* using Eq. (16):
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which can easily be seen to agree with Eq. (3), where A is taken to be one.

PROBLEM 2: LORENTZ-INVARIANCE OF THE PHASE SPACE
VOLUME IN SPECIAL RELATIVITY (10 @Simﬁ

Start out with the definition of the phase space density N:

Number of particles = Ndz'dz?da®dpidpadps (23)
Consider analyzing the system from two different inertial frames Aao“&ﬁ&mq&wv
and A& x't x'?, \wv. Since the number of particles in a phase space volume is a

physical quantity independent of the observer, we must have
Nd3zd®p = N'd3z' d®p’ (24)

Now, we must find out how the the phase space volumes compare. Because of issues
of simultaneity in both frames (different #° and 2’°) the solution through a direct
Jacobian can be tricky. However, one can use the suggestion in the problem and
first consider the case when one of the frames is the rest frame of the particles.
Let the unprimed frame (z,p) be the rest frame and the primed frame (2’,p’) the
boosted frame. Then a volume d3z becomes Lorentz contracted in the boosted
frame, yielding the relation

B2’ = (1/v)d>z. (25)



8.952 PROBLEM SET 4 SOLUTIONS, SPRING 2009 p. 5

To relate the momentum volume element in the rest frame d®p with that in the
boosted frame dp’, we can use the fact (used in Quantum Field Theory) that we
can get a Lorentz invariant spatial momentum volume element by integrating the
momentum four volume d*p over a delta function enforcing the mass shell constraint:

\%%%Aﬁtﬁt+3mV...H\%‘ﬁ.: (26)
2 vax_vgw

The last equation is obtained by integrating the delta function over py. The Lorentz

. . . d>p
invariant momentum measure is then PN/ If we compare the momentum vol-
. o : - &w% . &m%\
ume measures as seen in the rest frame, 5.2 and in the boosted frame P/ we
find upon using the Lorentz invariance of the this momentum measure:
&w &w /
a@p_ 4P (27)
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m
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In the last line, the relation v = /p’?2 + m?/m was used. Combining (28) and (31)
gives
&' dPp = (1/y)dPz vy d®p = d®z d®p (29)

To prove the equality for the case of two phase volumes in generic Lorentz frames
d32' d3p’ and d3z” d3p”’, you can use the fact that both frames are can be found from
boosts -with the appropriate 7y factors- from the rest frame we just used. So all that
would be needed is to apply (32) for both generic frames, which straightforwardly
yields d3x’ d®p’ = d3z" d®p”. Thus, the volumes cancel in (27) and we get:

.\/\A.Hs.uﬁf .wv = Z\A&\&,Emn w\v AMOV

PROBLEM 3: GENERAL COORDINATE INVARIANCE OF THE
PHASE SPACE VOLUME IN GENERAL RELATIVITY (20
points)*

(a) We are asked to show that the density of particles in an arbitrary space with
coordinates £, ... ,£™ can be written as

el )= Y [ arnan (el - € 0) (e~ talh) G (31)
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To show this, we start with the claim that p(£%,¢) can be written as
LSUED A GRS ACIE (32)

where £ (t) is the £'-coordinate of the o’th particle at time ¢. To verify this claim,
note that the integral of this expression over an arbitrary volume is equal to the
number of particles in that volume, which is exactly how a density is defined. To
finish, recall that the delta function of a function of a variable can be evaluated by

() = 30 T (33)
< | o

where the \; are the zeros of f(\), which are assumed to be simple zeros.* Applying
this formula to f(A) =t — t,(\), one has

5(t = ta(V) = %MM/QI Aa(t)) “ (34)
ﬂ C,QSL

where Ao (t) is the value of A for which ¢, (X) = t. If this expression for §(t — to()))
is substituted into Eq. (31), one can integrate over A to obtain Eq. (32), assuming
that t,(\) is a monotonically increasing function of .

(b) The trajectories in the primed system are given by
X™M(A) = X(X5(0) (35)
so the density function in primed coordinates is given by
%QuM\%ﬁéfﬁt@%s WF». ae

We now change variables inside the (n + 1)-dimensional delta function, using the
(n 4 1)-dimensional generalization of Eq. (33):
oxXH
@N:\

%ﬁ..l ANE _ ;X«mtv _ TU@n A v; mmﬁ.TH A»X‘t _ X%v , Awﬂv

¥ This formula is well-known to those who know it, but it seems hard to find it
in books. It is listed in the Wikipedia article on the “Dirac delta function,” and
it is given by J.D. Jackson in Classical Electrodynamics, 3rd Edition (Wiley,
1999), on p. 26. It can be verified by changing the variable of integration from A to

z= f(A).



8.952 PROBLEM SET 4 SOLUTIONS, SPRING 2009 p. 7

where X' and X/ are a set of constants related by X = X/*(X¥). (Later we will
let these “constants” depend on A, and we will integrate over A, but that does not
prevent us from treating them as constants here.) Eq. (37) is also considered well-
known by those who know it, but I have not been able to find it in print. (If you know
a place where it appears in print, please let me know!) It is of course fine if you used
it without explanation on your solutions, but for the sake of pedagogy I will show
how it follows from the Jacobian transformation of integration volumes, combined
with the fact that a delta function is really defined by the result of integrating with
a test function.

Specifically, if p(X*) is a test function, then 6" (X#* — X/') can be defined
by

[ - xg) e (0 = () | (38)

To change variables to X'#, we can start with the general relation

\ d"TIX F (XM = \ dmHx’

oxXH
Det (s )| PO+ 39

where the vertical bar with the subscript indicates that F' is to be evaluated at
the coordinates X* that correspond under the coordinate transformation to X’”.
Applying this general relation to the integral in Eq. (38),

P (Xf) = [ @i s oo - xp) o (00 (40a)
= [ d""X’ | Det oxr [t (X — X0 o (XM)]|
OX v 0 Xn=XE(X")
(40b)
= [ (0 - X 0 (X0 e (400)

where line (40c) is not obtained from the previous line, but rather by using the
definition of the delta function, as in Eq. (38), to show that the integral is equal to
¢ (X?). By comparing line (40b) with line (40c), one sees that they agree if and
only if Eq. (37) is valid. The “only-if” part of this statement requires that we know
that line (40b) is equal to (40c) for all test functions ¢, but that is the case. In a
more formal mathematical setting, the test functions would be required from the
beginning to belong to some specified class of well-behaved functions.

Using Eq. (37), Eq. (36) can be rewritten

. @ /
p(E"t) = MU\% Tug AQW\H: ST (XM — XE(N)) % ) (41)
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To complete our task of expressing p(£"%,t) in terms of p(¢%,t), as given by Eq. (31),
we need to rewrite ﬁww . The rewriting is pretty simple, however, because as we follow
a given particle, the variables A, ¢, and ¢’ are all redundant, with any one of them

determining the other two. Thus, we can write

dt,  dtl dt,

Doa D (42)

Furthermore, since the velocity of a particle is uniquely determined by its position

and time, me does not depend on which particle we are describing, but depends
only on the coordinates £* and t. Thus, the factor mww can be written as M‘w\mmw t),

and taken outside the sum and integral. Finally, Eq. ANREV can be rewritten as

, p !
" me‘ug A%pv at dta
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which implies, making use of Eq. (31) and the convention that X* = ¢ and X° = ¢,
that

oX¢ v LA (44)
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The above formula is really the desired result, but when I made up the problem
set I did not notice that it could be written this simply. To make contact with the
ﬁOaEEmm?msos;mEo_o_oBmmﬁsodmgmnm‘ﬂomsU@Béigmsg\mxwmsambmz

dt
in the X* coordinates:

e ot, dX* ot ot d¢

< = e 5 4
At oXH At ot | o¢ dt (45)

(c) I will evaluate the determinant in Eq. (44) by using Eq. (21) of the problem set,

@ﬂ\@ﬁ mkw
Umﬁ Awmqv =5 Um.n A@N:\v . TEV

However, the equations in the problem set express the primed coordinates in terms
of the unprimed, so I will use the fact that

p mN1t
Det AwwwvnTa @wz . (47)
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This equation can be shown by noting that the matrices on the two sides are inverses
of each other. Eq. (46) can then be rewritten as

ot.
oXH axm\] ot

Note that Det Awmmwv is the determinant of a 6 x 6 matrix that can be written in

block form as

@m:“ oz @@u.
D < )=D . 4
o A%v i (49)
dxd  Op;

The key equations are given as Eq. (28) of the problem set:

t =20 =tl(z") (50a)
' =z, (50b)
oxY
Pi= 5 by (50¢)
oxl ot. 1 2 3
= 5piPi t gpo(a, 2%, 2%, p1p2, pss t) (50d)

so I will start here. From Eq. (50b) we see that

ox'  0xl O
@@w

Pl 0w 0. (51)

Given the block form of Eq. (49), the vanishing of d2'%/0p; means that the upper
right 3 x 3 block vanishes, and therefore the lower left block is irrelevant, and

oerN oz"t op,
Det Ammu.v = Det A%v Det A@@mv . (52)

The p’ derivatives can be calculated from Eq. (50d), giving

op, 0zl N dte dpo
Op; Ozt~ Ox' Op; (53)
ozl Ot dat

gzt dx't dt
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where in the last step I used the fact that po is the Hamiltonian, so its derivatives
are related to the time derivatives of the canonical variables.

To evaluate Eq. (52), we can use the fact that the determinant of the product
of two matrices is equal to the determinant of the product, so

oL oz"" dp),
Det ) =Det (| z—=+
‘ A%v ) A% o,
Det ozt (0xi  Ot, dat
¢ Ox7 \ ozt  Oz'k dt
To further simplify, we can make use of the fact that the spacetime coordinate trans-
formation does not depend on the momenta (although it does affect the momenta).

For that reason Eqs. (23-25) of the problem set can be written for the spacetime
coordinates alone:

(54)

ol ozl Ozl Ot

&I dx'k 0 ot oz'k (55)
ot ozl Ot. Ot,

oxi ox'* Ot O’k - (56)
ot dxl ot ot

9w o0 Lt or (57)

To evaluate the determinant in Eq. (54), we can expand the argument of the deter-
minant in the 2nd line and then use identity (55) on the first term, finding

el B w  Ote (0zl8 92/t dad
Det A%QAV = Det T& Dl A ot + 907 dL VH . (58)

The quantity in parentheses can be simplified as

+ | = (59)

ozt 9x't da’ da”
ot Oxd dt dt ’

where the total derivative da?/dt refers to the derivative along the trajectory of the
particle, as in Eq. (45). Then

o\ p  Ot. da'
Det A@m\av = Det H& Bk i H , (60)

which is ready for evaluation using the identity in Eq. (22) of the problem set,

Det (8% + u'v;) = 1+ u'v; . (61)
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Thus,
o¢" Ot. dz’
Det <) =1- - —— 60
¢ A@mkv 9z’ dt (60)
which can be simplified by using the chain rule relation
ot. da’*  Ot.dt’  ot, dX'*  dt
oy e =—=1 1
o dt ovdt  oxw At dt (61)
so finally
oL ot. dt’
D ) = — . 2
ot Amm»v ot' dt (62)
By combining this result with Eqgs. (44) and (48), one sees that
PE" ) = p(Eht) (63)

which was the ultimate goal of this problem.

PROBLEM 4: SPECIFIC INTENSITY (10 points)*

By the definition of specific intensity I, the energy dFE hitting a detector of
area dA during a time dt, from a solid angle d2 and within a frequency interval dv,
is given by

dE =1,dAdtdQdrv . (64)

Since photons have energy hv, the number of photons is given by

dE I,
AN == =L dAdtdQdy . (65)

During the time interval d¢ the photons travel a distance d¢ = cdt, and since they
hit a detector of area dA, the volume containing the photons is

dPr=dldA=cdtdA . (66)
The magnitude of the photon momentum is

so the momentum space volume is

w
%@n@w%%n A\W\v % Amv %. amv
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Putting these results together,

2

I, 1 2 . 2 . I, .
AV =322 (2 (5) Paddp = S hdledp = S dadlp

" e \hw/) \h hiy3 (27h)* 13

Thus, the phase space density is

2 I,
M s

as claimed.

tSolution written by Carlos Santana.

*Solution written by Alan Guth.
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