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PROBLEM SET 5 SOLUTIONS

PROBLEM 1: EINSTEIN EQUATIONS IN SYNCHRONOUS GAUGE
(15 points)¶

For this problem, we begin by using the expression for the perturbation of the
Ricci tensor’s spatial components δRjk in Weinberg’s equation (5.1.13):

δRjk =− 1
2
∂j∂kh00 −

(
2ȧ2 + aä

)
δjkh00 − 1

2
aȧδjkḣ00

+
1
2a2

(∇2hjk − ∂i∂jhik − ∂i∂khij + ∂j∂khii

)

− 1
2
ḧjk +

ȧ

2a

(
ḣjk − δjkḣii

)
+
ȧ2

a2
(−2hjk + δjkhii) +

ȧ

a
δjk∂ihi0

+
1
2

(
∂j ḣk0 + ∂kḣj0

)
+

ȧ

2a
(∂jhk0 + ∂khj0) .

(1)

In the synchronous gauge, E and F are set to zero in the decomposition of the
metric perturbation hjk into scalar, vector and tensor modes. As indicated by the
problem, we will not include the vector modes so we set Cj = 0 and Gj = 0. The
metric perturbation hµν then takes the form:

h00 = hj0 = 0

hjk = a2 [Aδjk + ∂j∂kB +Djk] ,
(2)

where Djk is a symmetric tensor that satisfies Dii = 0 and ∂jDjk = 0. Since
h00 = hj0 = 0, the perturbation of the Ricci tensor simplifies somewhat to

δRjk =
1
2a2

(∇2hjk − ∂i∂jhik − ∂i∂khij + ∂j∂khii

)

− 1
2
ḧjk +

ȧ

2a

(
ḣjk − δjkḣii

)
+
ȧ2

a2
(−2hjk + δjkhii)

(3)

Inserting (2) into the first line of equation (3) gives after some algebra:

1
2a2

(∇2hjk − ∂i∂jhik − ∂i∂khij + ∂j∂khii

)
=

1
2

(
δjk∇2A+∇2Djk + ∂j∂kA

)
.

(4)
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Similarly, the second line of equation (3) gives:

− 1
2
ḧjk +

ȧ

2a

(
ḣjk − δjkḣii

)
+
ȧ2

a2
(−2hjk + δjkhii) =

− δjk

[(
aä+ 2ȧ2

)
A+ 3aȧȦ+

1
2
a2Ä+

aȧ

2
∇2Ḃ

]

− ∂j∂k

[(
aä+ 2ȧ2

)
B +

3
2
aȧḂ +

1
2
a2B̈

]

− (
aä+ 2ȧ2

)
Djk − 3

2
aȧḊjk − 1

2
a2D̈jk

(5)

Thus δRjk is expressed in terms of the scalar and tensor perturbations as

δRjk =δjk

[
1
2
∇2A− (

aä+ 2ȧ2
)
A− 3aȧȦ− 1

2
a2Ä− aȧ

2
∇2Ḃ

]

+ ∂j∂k

[
1
2
A− (

aä+ 2ȧ2
)
B − 3

2
aȧḂ − 1

2
a2B̈

]

+
1
2
∇2Djk − (

aä+ 2ȧ2
)
Djk − 3

2
aȧḊjk − 1

2
a2D̈jk

(6)

Now we use this expression in Einstein’s equations Rµν = −8πGSµν =
−8πG

(
Tµν − 1

2gµνT
λ

λ

)
. We decompose Tµν in terms of the unperturbed, per-

fect fluid part T̄µν and the correction δTµν . The latter has the spatial components
— neglecting vector modes — given by

δTjk = p̄ hjk + a2
[
δjkδp+ ∂j∂kπ

S + πT
jk

]
(7)

with p̄ the pressure in the unperturbed FRW universe, δp the pressure perturbation
and with πT

jk satisfying πT
ii = 0 and ∂jπ

T
jk = 0.

To first order in the perturbations, the purely spatial components of the Ein-
stein equation yield

δRjk = −8πG
(
δTjk − 1

2
hjkT̄

λ
λ − 1

2
ḡjkδT

λ
λ

)
. (8)

We shall assume that the unperturbed metric is the K = 0 Robertson-Walker
universe. From equation (5.1.43) in Weinberg’s text, we find δTλ

λ = 3δp − δρ +
∇2πS. Similarly, we can find the trace T̄λ

λ in terms of the scale factor a as

T̄λ
λ = − 3

4πG

(
ä

a
+
ȧ2

a2

)
, (9)
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and also

p̄(t) = − 1
8πG

(
2ä
a

+
ȧ2

a2

)
. (10)

Using this information, the jk component of Einstein’s equations becomes

δRjk = −8πGa2

[
∂j∂kπ

S + πT
jk +

1
2
δjk(δρ− δp−∇2πS)

]

−
(
ä

a
+

2ȧ2

a2

)
hjk .

(11)

Or, upon using hjk = a2 [Aδjk + ∂j∂kB +Djk], equation (11) becomes

δRjk = −8πG
[
∂j∂kπ

S + πT
jk +

1
2
δjk

(
δρ− δp−∇2πS

)]

− (aä+ 2ȧ2)(Aδjk + ∂j∂kB +Djk) .

(12)

Upon setting the right-hand sides of equations (6) and (12) equal to each other, we
obtain the final form of the δRjk equation:

1
2
∂j∂kA− 1

2
a2∂j∂kB̈ − 3

2
aȧ∂j∂kḂ − 1

2
a2∂j∂kD̈ − 3

2
aȧḊjk +

1
2
∇2Djk

+ δjk

(
1
2
a2Ä+ 3aȧȦ− 1

2
∇2A+

1
2
aȧ∇2Ḃ

)

= −8πGa2

[
∂j∂kπ

S + πT
jk +

1
2
δjk

(
δp− δρ+∇2πS

)]
.

(13)

This equation has the generic form

∂j∂kX + δjkY + Zjk = 0 , (14)

where Zii ≡ 0 and ∂jZjk ≡ 0. As long as X , Y , and Z are Fourier expandable, so
that the equation can be rewritten in Fourier space as

−qiqjXq + δjkYq + Zjk,q = 0 , (15)

with Zii,q ≡ 0 and qjZjk,q ≡ 0, then one can show that X , Y , and Z must vanish
separately. This is the case for cosmologically interesting density perturbations.
However, it is worth pointing out that this decomposition depends on boundary
conditions, and is not completely general. If for example we allow X to equal
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1
2ωijx

ixj , then ∂j∂kX = ωij . If ωij contains a piece proportional to δij , then the X
term will mix with the Y term in Eq. (14). If ωij contains a traceless piece, it will
mix with the Z term. Terms like these would arise, for example, if one described
a slightly open or slightly closed Robertson-Walker universe as a perturbation of
a flat universe. The perturbative description would break down at large distances
from the origin, but it can still be a perfectly valid description in some finite region
about the origin.

In any case, we are interested here in cosmological perturbations which are
described by a Fourier expansion, so the three contributions in Eq. (13) must vanish
separately. Looking first at the piece proportional to δjk, we find

−4πGa2
(
δρ− δp−∇2πS

)
=

1
2
∇2A− 1

2
a2Ä− 3aȧȦ− aȧ

2
∇2Ḃ , (16)

which is Weinberg’s equation (5.3.28). By insisting that the terms involving ∂j∂k

should vanish, one finds

∂j∂k

[−16πGa2πS
]
= ∂j∂k

[
A− a2B̈ − 3aȧḂ

]
, (17)

which is Weinberg’s equation (5.3.29) for the non-zero modes. Finally, although you
were not asked to write this equation, we can extract the traceless and divergenceless
piece of Eq. (13),

−16πGa2πT
jk = ∇2Djk − a2D̈jk − 3aȧḊjk , (18)

which corresponds to Weinberg’s equation (5.1.53).

PROBLEM 2: HOMOGENEOUS GAUGE TRANSFORMATIONS IN
SYNCHRONOUS GAUGE (10 points)†

For the synchronous gauge, the general first-order spatially homogeneous scalar
and tensor perturbations to the metric take the form:

h00 = 0 (19)

hi0 = 0 (20)

hij = a2 [A(t)δij +Dij(t)] (21)
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Now consider the gauge transformations in equations (5.3.5) through (5.3.7) in
Weinberg’s text.

∆h00 = −2
∂ε0
∂t

(22)

∆hi0 = −∂εi
∂t

− ∂ε0
∂xi

+ 2
ȧ

a
εi (23)

∆hij = − ∂εi
∂xj

− ∂εj
∂xi

+ 2aȧδijε0. (24)

To preserve the synchronous gauge condition for h00, we must have ∆h00 = 0 in
equation (22), which implies

∆h00 = −2
∂ε0
∂t

= 0

=⇒ ε0 = ε(x).
(25)

Continuing with equation (23), we must also have ∆hi0 = 0 to preserve the syn-
chronous gauge condition, so that

∆hi0 = −∂εi
∂t

− ∂ε(x)
∂xi

+ 2
ȧ

a
εi = 0

=⇒ ∂εi(x, t)
∂t

− 2
ȧ

a
εi(x, t) = −∂ε(x)

∂xi

(26)

This last equation can be easily solved using an integrating factor µ(t) =
exp

(∫ (−2 ȧ
a

)
dt

)
= a(t)−2 giving us

εi(x, t) = a(t)2αi(x)− a(t)2
∂ε(x)
∂xi

∫ t

T

dt′

a(t′)2
, (27)

where αi(x) is an arbitrary vector function, to be determined by enforcing homo-
geneity.

The last gauge transformation, that of hij , can be written using our results for
ε0 and εi as

∆hij = − ∂εi
∂xj

− ∂εj
∂xi

+ 2aȧδijε0

= −
[
a2 ∂αi(x)

∂xj
− a2 ∂

2ε(x)
∂xj∂xi

∫ t

T

dt′

a(t′)2

]

−
[
a2 ∂αj(x)

∂xi
− a2 ∂

2ε(x)
∂xi∂xj

∫ t

T

dt′

a(t′)2

]
+ 2aȧδijε(x)

= −a2

(
∂αi(x)
∂xj

+
∂αj(x)
∂xi

)
+ 2a2 ∂

2ε(x)
∂xi∂xj

∫ t

T

dt′

a(t′)2
+ 2aȧδijε(x).

(28)
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Now, by enforcing x-independence of ∆hij , we must take ε(x) = ε = constant.
Also, we take αi(x) = ωijx

j , with ωij a constant matrix. With these choices, we
find

∆hij = −a2 (ωij + ωji) + 2aȧδijε (29)

= δij

(
−2
3
a2ωkk + 2aȧε

)
− a2

(
ωij + ωji − 2

3
ωkkδij

)
, (30)

where in the last line we separated the symmetric, traceless part from that propor-
tional to δij . However, using the equations for hij at the beginning of this problem
— which give hij in terms of the scalar perturbation A and the tensor Dij — we
can see that

∆hij = a2δij∆A+ a2∆Dij . (31)

Upon comparing the parts proprtional to δij and the symmetric, traceless tensor
parts in (30) and (31) we find:

∆A = −2
3
ωkk + 2Hε, (32)

∆Dij = −
(
ωij + ωji − 2

3
ωkk δij

)
. (33)

We can also find the corresponding expressions for the changes in δp, δρ, δu and
πS using the expressions for the gauge transformations in equations (5.3.14) and
(5.3.15) in Weinberg’s book, together with our expressions for the gauge functions
ε0 and εi:

∆δp = ˙̄pε0 = ˙̄pε, (34)

∆δρ = ˙̄ρε0 = ˙̄ρε, (35)

∆δu = −ε0 = −ε, (36)

∆πS = 0. (37)

Now, since {hµν , Tµν} and {hµν +∆hµν , Tµν +∆Tµν} are both solutions to the
field equations and conservation equations, their difference must also be a solution.
Thus there is always a spatially homogeneous solution of the synchronous gauge
field and conservation equations with:
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A = −2
3
ωkk + 2Hε,

Dij = −
(
ωij + ωji − 2

3
ωkk δij

)

δp = ˙̄pε,

δρ = ˙̄ρε,

δu = −ε,
πS = 0.

(38)

(39)

(40)

(41)

(42)

(43)

PROBLEM 3: CONSTRUCTION OF ADIABATIC SOLUTIONS (10
points)∗

Weinberg’s Eq. (5.3.30), when written in full, becomes 8πGa(ρ̄ + p̄)∂i δu =
a∂iȦ, where the dot over the A was incorrectly omitted in the problem set. For the
solution described in Problem 2, A = −2

3ωkk + 2Hε, and δu = −ε, as described in
Eqs. (38) and (42). Using Ḣ = −4πG(ρ̄ + p̄), it can be seen that this equation is
satisfied.

The other constraint equation is (5.3.29), the detailed form of which was derived
in Problem 1 as Eq. (17). For the adiabatic solutions πS = 0, so for nonzero q the
Fourier space representation of Eq. (17) becomes

A− a2B̈ − 3aȧḂ = 0

=⇒ 1
a

d
dt

(
a3Ḃ

)
= A = 2

ȧ

a
ε− 2

3
ωkk

=⇒ d
dt

(
a3Ḃ

)
= 2εȧ− 2

3
ωkka

=⇒ a3Ḃ = 2εa− 2
3
ωkk

∫ t

T
a(t′) dt′ + B ,

(44)

where B is a constant of integration. Continuing,

Ḃ =
2ε
a2

− 2
3
ωkk

a3

∫ t

T
a(t′) dt′ +

B
a3

=⇒ B = 2ε
∫ t

T

dt′

a2(t′)
− 2

3
ωkk

∫ t

T

dt′

a3(t′)

∫ t′

T
a(t′′) dt′′ + B

∫ t

T

dt′

a3(t′)
.

(45)
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At this point one might notice a subtle point: the mode proportional to ε is
exactly the residual gauge freedom of synchronous gauge, which Weinberg describes
in Eqs. (5.3.40)–(5.3.42). Thus this mode has no physical significance, even when
the eiq·x spatial dependence is included, and so we will drop it. The two physical
modes are the one proportional to ωkk and the one proportional to B. Note that
the B mode has A = 0, and that both modes have no perturbations in the energy-
momentum tensor variables. Thus, the new description of the adiabatic modes is
given by

A = −2
3
ωkk ,

B = −2
3
ωkk

∫ t

T

dt′

a3(t′)

∫ t′

T
a(t′′) dt′′ + B

∫ t

T

dt′

a3(t′)
,

δp = δρ = δu = πS = 0 .

(46)

(47)

(48)

The statement in the Problem Set that B can be found by using Eq. (5.3.13)
seems to have been slightly exaggerated. Eq. (5.3.13) says that

∆F =
1
a

(
−ε0 − ε̇S +

2ȧ
a
εS

)
, (49)

where in this case ε0 = ε = const. This equation can be solved by noting that
∆F = 0 can be written as

a2 d
dt

(
εS

a2

)
= −ε =⇒ εS

a2
= −ε

∫ t

T

dt′

a2(t′)
. (50)

Eq. (5.3.13) also tells us that B = −2εS/a2, so this calculation reproduces the first
term in Eq. (45), the term that we dropped because it is purely a gauge mode. It
does not appear to be possible to generate either of the physical modes in this way.
One should probably not be surprised that this method fails to generate the full
answer, since the boundary conditions used in these homogeneous solutions, with
εi ∝ ωijx

j , are loose enough so that the decomposition used in Eq. (5.3.13) is not
unique.

Note that in integrating Ḃ to obtain B in Eq. (45), one could have added a
constant of integration to the answer, corresponding to a time-independent contri-
bution to B. However, if one looks at the synchronous gauge equations of motion
in Eqs. (5.3.28)–(5.3.33), one sees that B always appears as Ḃ or B̈. Thus a
time-independent contribution to B suspiciously has no effect on any of the other
variables. It turns out that changing B by a time-independent function is another
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residual gauge freedom of synchronous gauge, one that is not discussed in Wein-
berg’s book. If one thinks of synchronous gauge as an evolution of equal-time slices,
the residual gauge freedom that Weinberg discusses corresponds to choosing an ini-
tial slice that is slightly offset in the time direction from the original choice. The
other residual gauge freedom is to perturb the spatial coordinate system on the
initial slice. In terms of the formalism of Eq. (5.3.13), it corresponds to a gauge
transformation with eS/a2 chosen to be independent of time, which can be seen to
produce a time-independent change in B with no change in the other variables.

In the next problem we will see how B can also be determined by gauge trans-
forming from the Newtonian gauge.

PROBLEM 4: GAUGE EQUIVALENCE OF THE ADIABATIC SOLU-
TIONS IN SYNCHRONOUS AND NEWTONIAN GAUGES (10
points)∗

Let us transform from Newtonian gauge to synchronous gauge, starting with
the solution described by Weinberg’s Eqs. (5.4.14–5.4.18). To avoid confusion with
the gauge transformation that we need to describe, I will add a subscript to ε(t) in
Eq. (5.4.15), writing it as

εR =
R
a(t)

∫ t

T
a(t′) dt′ , (51)

where R = 1
3
ωkk and

Ψ = Φ = −ε̇R . (52)

Note that these equations describe the adiabatic solution, which due to the implicit
eiq·x spatial dependence is not a gauge transformation of the homogenous solution.
We now wish to find a genuine gauge transformation that takes this solution to
synchronous gauge.

Following Weinberg’s description starting with Eq. (5.3.44), we seek a function
ε0 satisfying

ε̇0 = −Φ . (53)

Clearly,
ε0 = εR (54)

satisfies the desired equation. Then, according to Eq. (5.3.46), A is given by

A = −2Ψ + 2Hε0 , (55)
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which gives

A = 2ε̇R + 2HεR

= 2R
[(

1− H

a(t)

∫ t

T
a(t′) dt′

)
+

H

a(t)

∫ t

T
a(t′) dt′

]

= 2R =
2
3
ωkk .

(56)

This agrees with the expression for A in Eq. (46), assuming that the synchronous
gauge solution constructed in Problem 3 is based on the opposite sign choice for the
meaning of ωij . To find the value of B that results from the gauge transformation,
we must solve

∂

∂t

(
εS

a2

)
= − ε0

a2
= −εR

a2
. (57)

Using B = − 2
a2 ε

S and integrating, we find

B = 2
∫ t

T

εRdt′

a2(t′)
=

2
3
ωkk

∫ t

T

dt′

a3(t′)

∫ t′

T
a(t′′) dt′′. (58)

This matches the 1st term in Eq. (47), again allowing for a sign change in the
meaning of ωij . By looking at the gauge transformation equations (5.3.14),

∆δp = ˙̄p ε0 , ∆δρ = ˙̄ρ ε0 , ∆δu = −ε0 , (59)

one sees that values of δp, δρ, and δu in Eqs. (40)–(42) are canceled by the gauge
transformation, so that they vanish in synchronous gauge.

To find the other B term in the synchronous gauge solution, we need to
start with the 2nd adiabatic solution in Newtonian gauge, the one described by
Eqs. (5.4.19–5.4.21). Here the solution can be written

Ψ = Φ = −ε̇C , (60)

where
εC =

C

a(t)
, so Ψ = Φ =

CH
a(t)

. (61)

So the gauge transformation uses ε0 = εC , and

A = −2Ψ + 2HεC = 0 . (62)

To find B for this solution, we solve

∂

∂t

(
εS

a2

)
= −εC

a2
= − C

a3
, (63)
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and then

B = − 2
a2
εS = 2C

∫ t

T

dt′

a3(t′)
. (64)

This agrees with Eq. (47), if we take the arbitrary constant C to equal B/2. The C
solution has

δρ
˙̄ρ

=
δp
˙̄p

= −δu = − C
a(t)

, (65)

and it can be seen that the gauge transformation will lead to these quantities van-
ishing in synchronous gauge.

¶Solution written by Carlos Santana and Alan Guth.
†Solution written by Carlos Santana.
∗Solution written by Alan Guth.


