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For
this

problem
,
w
e
begin

by
using

the
expression

for
the

perturbation
of

the
R
icci

tensor’s
spatial

com
ponents

δR
j
k
in

W
einberg’s

equation
(5.1

.13):

δR
j
k
=

−
12
∂

j ∂
k h

0
0 − (2

ȧ
2
+
a
ä )
δ
j
k h

0
0 −

12
a
ȧ
δ
j
k
ḣ

0
0

+
12
a
2 (∇

2h
j
k −

∂
i ∂

j h
ik −

∂
i ∂

k h
ij
+
∂

j ∂
k h

ii )

−
12
ḧ

j
k
+

ȧ2
a (

ḣ
j
k −

δ
j
k ḣ

ii )
+
ȧ
2

a
2
(−

2
h

j
k
+
δ
j
k
h

ii )
+
ȧa
δ
j
k
∂

i h
i0

+
12 (

∂
j ḣ

k
0
+
∂

k ḣ
j
0 )

+
ȧ2
a
(∂

j h
k
0
+
∂

k h
j
0 )
.

(1)

In
the

synchronous
gauge,

E
and

F
are

set
to

zero
in

the
decom

position
of

the
m
etric

perturbation
h

j
k
into

scalar,
vector

and
tensor

m
odes.

A
s
indicated

by
the

problem
,
w
e
w
ill

not
include

the
vector

m
odes

so
w
e
set

C
j
=

0
and

G
j
=

0.
T
he

m
etric

perturbation
h

µ
ν
then

takes
the

form
:

h
0
0
=
h

j
0
=

0

h
j
k
=
a
2
[A
δ
j
k
+
∂

j ∂
k B

+
D

j
k ],

(2)

w
here

D
j
k
is

a
sym

m
etric

tensor
that

satisfies
D

ii
=

0
and

∂
j D

j
k
=

0.
Since

h
0
0
=
h

j
0
=

0,the
perturbation

of
the

R
icci

tensor
sim

plifies
som

ew
hat

to

δR
j
k
=

12
a
2 (∇

2h
j
k −

∂
i ∂

j h
ik −

∂
i ∂

k h
ij
+
∂

j ∂
k h

ii )

−
12
ḧ

j
k
+

ȧ2
a (

ḣ
j
k −

δ
j
k ḣ

ii )
+
ȧ
2

a
2
(−

2
h

j
k
+
δ
j
k
h

ii )
(3)

Inserting
(2)

into
the

first
line

of
equation

(3)
gives

after
som

e
algebra:

12
a
2 (∇

2h
j
k −

∂
i ∂

j h
ik −

∂
i ∂

k h
ij
+
∂

j ∂
k h

ii )
=

12 (δ
j
k ∇

2A
+
∇

2D
j
k
+
∂

j ∂
k A )

.

(4)
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Sim
ilarly,the

second
line

of
equation

(3)
gives:

−
12
ḧ

j
k
+

ȧ2
a (

ḣ
j
k −

δ
j
k
ḣ

ii )
+
ȧ
2

a
2
(−

2
h

j
k
+
δ
j
k h

ii )
=

−
δ
j
k [(a

ä
+

2
ȧ
2 )
A
+

3
a
ȧ
Ȧ
+

12
a
2Ä

+
a
ȧ2
∇

2Ḃ ]

−
∂

j ∂
k [(a

ä
+
2
ȧ
2 )
B

+
32
a
ȧ
Ḃ

+
12
a
2B̈ ]

− (a
ä
+
2
ȧ
2 )
D

j
k −

32
a
ȧ
Ḋ

j
k −

12
a
2D̈

j
k

(5)

T
hus

δR
j
k
is

expressed
in

term
s
of

the
scalar

and
tensor

perturbations
as

δR
j
k
=
δ
j
k [

12 ∇
2A

− (a
ä
+

2
ȧ
2 )
A
−

3
a
ȧ
Ȧ
−

12
a
2Ä

−
a
ȧ2
∇

2Ḃ ]

+
∂

j ∂
k [

12
A
− (a

ä
+
2
ȧ
2 )
B

−
32
a
ȧ
Ḃ

−
12
a
2B̈ ]

+
12 ∇

2D
j
k − (a

ä
+

2
ȧ
2 )
D

j
k −

32
a
ȧ
Ḋ

j
k −

12
a
2D̈

j
k

(6)

N
ow

w
e

use
this

expression
in

E
instein’s

equations
R

µ
ν

=
−
8
π
G
S

µ
ν

=
−
8
π
G (T

µ
ν −

12
g

µ
ν T

λ
λ ).

W
e
decom

pose
T

µ
ν
in

term
s
of

the
unperturbed,

per-
fect

fluid
part

T̄
µ

ν
and

the
correction

δT
µ

ν .
T
he

latter
has

the
spatial

com
ponents

—
neglecting

vector
m
odes

—
given

by

δT
j
k
=
p̄
h

j
k
+
a
2 [δ

j
k δp

+
∂

j ∂
k π

S
+
π

Tj
k ]

(7)

w
ith

p̄
the

pressure
in

the
unperturbed

F
R
W

universe,
δp

the
pressure

perturbation
and

w
ith

π
Tj
k
satisfying

π
Tii
=

0
and

∂
j π

Tj
k
=

0.

T
o
first

order
in

the
perturbations,

the
purely

spatial
com

ponents
of

the
E
in-

stein
equation

yieldδR
j
k
=

−
8
π
G (

δT
j
k −

12
h

j
k T̄

λ
λ −

12
ḡ

j
k δT

λ
λ )

.
(8)

W
e
shall

assum
e
that

the
unperturbed

m
etric

is
the

K
=

0
R
obertson-W

alker
universe.

From
equation

(5
.1
.43)

in
W
einberg’s

text,
w
e
find

δT
λ

λ
=

3
δp−

δρ
+

∇
2π

S.
Sim

ilarly,w
e
can

find
the

trace
T̄

λ
λ
in

term
s
of

the
scale

factor
a
as

T̄
λ

λ
=

−
3

4
π
G (

äa
+
ȧ
2

a
2 )

,
(9)



8.952
P

R
O

B
L
E

M
S
E

T
5

S
O

L
U

T
IO

N
S
,
S
P

R
IN

G
2009

p
.
3

and
also

p̄(t)
=

−
1

8
π
G (

2
äa
+
ȧ
2

a
2 )

.
(10)

U
sing

this
inform

ation,
the

jk
com

ponent
of

E
instein’s

equations
becom

es

δR
j
k
=

−
8
π
G
a
2 [
∂

j ∂
k π

S
+
π

Tj
k
+

12
δ
j
k (δρ−

δp−
∇

2π
S) ]

− (
äa
+

2
ȧ
2

a
2 )

h
j
k
.

(11)

O
r,

upon
using

h
j
k
=
a
2
[A
δ
j
k
+
∂

j ∂
k B

+
D

j
k ],

equation
(11)

becom
es

δR
j
k
=

−
8
π
G [

∂
j ∂

k π
S
+
π

Tj
k
+

12
δ
j
k (δρ−

δp−
∇

2π
S ) ]

−
(a
ä
+
2
ȧ
2)(A

δ
j
k
+
∂

j ∂
k B

+
D

j
k )

.

(12)

U
pon

setting
the

right-hand
sides

of
equations

(6)
and

(12)
equalto

each
other,w

e
obtain

the
final

form
of

the
δR

j
k
equation:

12
∂

j ∂
k A

−
12
a
2∂

j ∂
k B̈

−
32
a
ȧ
∂

j ∂
k Ḃ

−
12
a
2∂

j ∂
k D̈

−
32
a
ȧ
Ḋ

j
k
+

12 ∇
2D

j
k

+
δ
j
k (

12
a
2Ä

+
3
a
ȧ
Ȧ
−

12 ∇
2A

+
12
a
ȧ∇

2Ḃ )

=
−
8
π
G
a
2 [
∂

j ∂
k π

S
+
π

Tj
k
+

12
δ
j
k (δp−

δρ
+
∇

2π
S ) ]

.

(13)

T
his

equation
has

the
generic

form

∂
j ∂

k X
+
δ
j
k Y

+
Z

j
k
=

0
,

(14)

w
here

Z
ii ≡

0
and

∂
j Z

j
k ≡

0.
A
s
long

as
X
,
Y
,
and

Z
are

Fourier
expandable,

so
that

the
equation

can
be

rew
ritten

in
Fourier

space
as

−
q
i q

j X
q
+
δ
j
k Y

q
+
Z

j
k
,q
=

0
,

(15)

w
ith

Z
ii,q ≡

0
and

q
j Z

j
k
,q ≡

0,
then

one
can

show
that

X
,
Y
,
and

Z
m
ust

vanish
separately.

T
his

is
the

case
for

cosm
ologically

interesting
density

perturbations.
H
ow

ever,
it

is
w
orth

pointing
out

that
this

decom
position

depends
on

boundary
conditions,

and
is

not
com

pletely
general.

If
for

exam
ple

w
e
allow

X
to

equal
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12
ω

ij x
ix

j,then
∂

j ∂
k X

=
ω

ij .
If
ω

ij
contains

a
piece

proportionalto
δ
ij ,then

the
X

term
w
ill

m
ix

w
ith

the
Y

term
in

E
q.

(14).
If
ω

ij
contains

a
traceless

piece,
it

w
ill

m
ix

w
ith

the
Z

term
.
T
erm

s
like

these
w
ould

arise,
for

exam
ple,

if
one

described
a
slightly

open
or

slightly
closed

R
obertson-W

alker
universe

as
a
perturbation

of
a
flat

universe.
T
he

perturbative
description

w
ould

break
dow

n
at

large
distances

from
the

origin,but
it
can

stillbe
a
perfectly

valid
description

in
som

e
finite

region
about

the
origin.

In
any

case,
w
e
are

interested
here

in
cosm

ological
perturbations

w
hich

are
described

by
a
Fourier

expansion,so
the

three
contributions

in
E
q.(13)

m
ust

vanish
separately.

L
ooking

first
at

the
piece

proportionalto
δ
j
k ,

w
e
find

−
4
π
G
a
2 (δρ−

δp−
∇

2π
S )

=
12 ∇

2A
−

12
a
2Ä

−
3
a
ȧ
Ȧ
−
a
ȧ2
∇

2Ḃ
,

(16)

w
hich

is
W
einberg’s

equation
(5.3

.28).
B
y
insisting

that
the

term
s
involving

∂
j ∂

k

should
vanish,

one
finds

∂
j ∂

k [−
16
π
G
a
2π

S ]
=
∂

j ∂
k [A

−
a
2B̈

−
3
a
ȧ
Ḃ ]

,
(17)

w
hich

is
W
einberg’s

equation
(5.3

.29)
for

the
non-zero

m
odes.

F
inally,although

you
w
ere

not
asked

to
w
rite

this
equation,w

e
can

extract
the

traceless
and

divergenceless
piece

of
E
q.(13),

−
16
π
G
a
2π

Tj
k
=

∇
2D

j
k −

a
2D̈

j
k −

3
a
ȧ
Ḋ

j
k
,

(18)

w
hich

corresponds
to

W
einberg’s

equation
(5.1

.53).

P
R

O
B

L
E
M

2:
H

O
M

O
G

E
N

E
O

U
S

G
A

U
G

E
T

R
A

N
S
F
O

R
M

A
T

IO
N

S
IN

S
Y

N
C

H
R

O
N

O
U

S
G

A
U

G
E

(10
points) †

For
the

synchronous
gauge,the

generalfirst-order
spatially

hom
ogeneous

scalar
and

tensor
perturbations

to
the

m
etric

take
the

form
:

h
0
0
=

0
(19)

h
i0

=
0

(20)

h
ij
=
a
2
[A

(t)δ
ij
+
D

ij (t)]
(21)
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N
ow

consider
the

gauge
transform

ations
in

equations
(5.3

.5)
through

(5.3
.7)

in
W
einberg’s

text.

∆
h

0
0
=

−
2
∂
ε
0

∂
t

(22)

∆
h

i0
=

−
∂
ε
i

∂
t
−
∂
ε
0

∂
x

i
+

2
ȧa
ε
i

(23)

∆
h

ij
=

−
∂
ε
i

∂
x

j −
∂
ε
j

∂
x

i
+

2
a
ȧ
δ
ij ε

0 .
(24)

T
o
preserve

the
synchronous

gauge
condition

for
h

0
0 ,

w
e
m
ust

have
∆
h

0
0
=

0
in

equation
(22),w

hich
im

plies

∆
h

0
0
=

−
2
∂
ε
0

∂
t

=
0

=⇒
ε
0
=
ε(x

).
(25)

C
ontinuing

w
ith

equation
(23),

w
e
m
ust

also
have

∆
h

i0
=

0
to

preserve
the

syn-
chronous

gauge
condition,

so
that

∆
h

i0
=

−
∂
ε
i

∂
t
−
∂
ε(x

)
∂
x

i
+
2
ȧa
ε
i
=

0

=⇒
∂
ε
i (x

,t)
∂
t

−
2
ȧa
ε
i (x

,t)
=

−
∂
ε(x

)
∂
x

i

(26)

T
his

last
equation

can
be

easily
solved

using
an

integrating
factor

µ(t)
=

exp (∫ (−
2

ȧa )
d
t )

=
a(t) −

2
giving

us

ε
i (x

,t)
=
a(t)

2α
i (x

)−
a(t)

2
∂
ε(x

)
∂
x

i ∫
t

T

d
t ′

a(t ′)
2
,

(27)

w
here

α
i (x

)
is

an
arbitrary

vector
function,

to
be

determ
ined

by
enforcing

hom
o-

geneity.

T
he

last
gauge

transform
ation,that

of
h

ij ,can
be

w
ritten

using
our

results
for

ε
0
and

ε
i
as

∆
h

ij
=

−
∂
ε
i

∂
x

j −
∂
ε
j

∂
x

i
+

2
a
ȧ
δ
ij ε

0

=
− [

a
2
∂
α

i (x
)

∂
x

j
−
a
2
∂

2ε(x
)

∂
x

j∂
x

i ∫
t

T

d
t ′

a(t ′)
2 ]

− [
a
2
∂
α

j (x
)

∂
x

i
−
a
2
∂

2ε(x
)

∂
x

i∂
x

j ∫
t

T

d
t ′

a(t ′)
2 ]

+
2
a
ȧ
δ
ij ε(x

)

=
−
a
2 (

∂
α

i (x
)

∂
x

j
+
∂
α

j (x
)

∂
x

i

)
+
2
a
2
∂

2ε(x
)

∂
x

i∂
x

j ∫
t

T

d
t ′

a(t ′)
2
+
2
a
ȧ
δ
ij ε(x

).

(28)
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N
ow

,by
enforcing

x
-independence

of
∆
h

ij ,w
e
m
ust

take
ε(x

)
=
ε
=

constant.
A
lso,

w
e
take

α
i (x

)
=
ω

ij x
j,

w
ith

ω
ij

a
constant

m
atrix.

W
ith

these
choices,

w
e

find

∆
h

ij
=

−
a
2
(ω

ij
+
ω

j
i )
+
2
a
ȧ
δ
ij ε

(29)

=
δ
ij (−

23
a
2ω

k
k
+
2
a
ȧ
ε )

−
a
2 (

ω
ij
+
ω

j
i −

23
ω

k
k δ

ij )
,

(30)

w
here

in
the

last
line

w
e
separated

the
sym

m
etric,traceless

part
from

that
propor-

tionalto
δ
ij .

H
ow

ever,using
the

equations
for

h
ij

at
the

beginning
of

this
problem

—
w
hich

give
h

ij
in

term
s
of

the
scalar

perturbation
A

and
the

tensor
D

ij
—

w
e

can
see

that

∆
h

ij
=
a
2δ

ij ∆
A
+
a
2∆

D
ij .

(31)

U
pon

com
paring

the
parts

proprtional
to

δ
ij

and
the

sym
m
etric,

traceless
tensor

parts
in

(30)
and

(31)
w
e
find:

∆
A

=
−
23
ω

k
k
+

2
H
ε,

(32)

∆
D

ij
=

− (
ω

ij
+
ω

j
i −

23
ω

k
k
δ
ij )

.
(33)

W
e
can

also
find

the
corresponding

expressions
for

the
changes

in
δp,

δρ,
δu

and
π

S
using

the
expressions

for
the

gauge
transform

ations
in

equations
(5.3

.14)
and

(5
.3
.15)

in
W
einberg’s

book,
together

w
ith

our
expressions

for
the

gauge
functions

ε
0
and

ε
i :

∆
δp

=
˙̄pε

0
=

˙̄pε,
(34)

∆
δρ

=
˙̄ρε

0
=

˙̄ρε,
(35)

∆
δu

=
−
ε
0
=

−
ε,

(36)

∆
π

S
=

0
.

(37)

N
ow

,since{
h

µ
ν
,T

µ
ν }

and{
h

µ
ν
+
∆
h

µ
ν
,T

µ
ν
+
∆
T

µ
ν }

are
both

solutions
to

the
field

equations
and

conservation
equations,their

difference
m
ust

also
be

a
solution.

T
hus

there
is

alw
ays

a
spatially

hom
ogeneous

solution
of

the
synchronous

gauge
field

and
conservation

equations
w
ith:



8.952
P

R
O

B
L
E

M
S
E

T
5

S
O

L
U

T
IO

N
S
,
S
P

R
IN

G
2009

p
.
7

A
=

−
23
ω

k
k
+

2
H
ε,

D
ij
=

− (
ω

ij
+
ω

j
i −

23
ω

k
k
δ
ij )

δp
=

˙̄pε,

δρ
=

˙̄ρε,

δu
=

−
ε,

π
S
=

0
.

(38)

(39)

(40)

(41)

(42)

(43)

P
R

O
B

L
E
M

3:
C

O
N

S
T
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S
O

L
U

T
IO

N
S

(10
points) ∗

W
einberg’s

E
q.

(5.3.30),
w
hen

w
ritten

in
full,

becom
es

8π
G
a(ρ̄

+
p̄)∂

i
δu

=
a
∂

i Ȧ
,w

here
the

dot
over

the
A

w
as

incorrectly
om

itted
in

the
problem

set.
For

the
solution

described
in

P
roblem

2,
A

=
−

23
ω

k
k
+

2
H
ε,

and
δu

=
−
ε,

as
described

in
E
qs.

(38)
and

(42).
U
sing

Ḣ
=

−
4
π
G
(ρ̄

+
p̄),

it
can

be
seen

that
this

equation
is

satisfied.

T
he

other
constraint

equation
is
(5.3.29),the

detailed
form

ofw
hich

w
as

derived
in

P
roblem

1
as

E
q.

(17).
For

the
adiabatic

solutions
π

S
=

0,
so

for
nonzero

q
the

Fourier
space

representation
of

E
q.(17)

becom
es

A
−
a
2B̈

−
3
a
ȧ
Ḃ

=
0

=⇒
1a

dd
t (

a
3Ḃ )

=
A

=
2
ȧa
ε−

23
ω

k
k

=⇒
dd
t (

a
3Ḃ )

=
2
εȧ−

23
ω

k
k a

=⇒
a
3Ḃ

=
2
εa−

23
ω

k
k ∫

t

T
a(t ′)d

t ′+
B
,

(44)

w
hereB

is
a
constant

of
integration.

C
ontinuing,

Ḃ
=

2
ε

a
2 −

23
ω

k
k

a
3 ∫

t

T
a(t ′)d

t ′+
Ba
3

=⇒
B

=
2
ε ∫

t

T

d
t ′

a
2(t ′) −

23
ω

k
k ∫

t

T

d
t ′

a
3(t ′) ∫

t ′

T
a(t ′′)d

t ′′+
B ∫

t

T

d
t ′

a
3(t ′)

.

(45)
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A
t
this

point
one

m
ight

notice
a
subtle

point:
the

m
ode

proportional
to

ε
is

exactly
the

residualgauge
freedom

ofsynchronous
gauge,w

hich
W
einberg

describes
in

E
qs.

(5.3.40)–(5.3.42).
T
hus

this
m
ode

has
no

physical
significance,

even
w
hen

the
e
iq·x

spatial
dependence

is
included,

and
so

w
e
w
ill

drop
it.

T
he

tw
o
physical

m
odes

are
the

one
proportional

to
ω

k
k
and

the
one

proportional
to

B
.
N
ote

that
theB

m
ode

has
A

=
0,

and
that

both
m
odes

have
no

perturbations
in

the
energy-

m
om

entum
tensor

variables.
T
hus,

the
new

description
of

the
adiabatic

m
odes

is
given

by

A
=

−
23
ω

k
k
,

B
=

−
23
ω

k
k ∫

t

T

d
t ′

a
3(t ′) ∫

t ′

T
a(t ′′)d

t ′′+
B ∫

t

T

d
t ′

a
3(t ′)

,

δp
=
δρ

=
δu

=
π

S
=

0
.

(46)

(47)

(48)

T
he

statem
ent

in
the

P
roblem

Set
that

B
can

be
found

by
using

E
q.

(5.3.13)
seem

s
to

have
been

slightly
exaggerated.

E
q.(5.3.13)

says
that

∆
F

=
1a (−

ε
0 −

ε̇
S
+

2
ȧa
ε
S )

,
(49)

w
here

in
this

case
ε
0
=

ε
=

const.
T
his

equation
can

be
solved

by
noting

that
∆
F

=
0
can

be
w
ritten

as

a
2
dd
t (

ε
S

a
2 )

=
−
ε

=⇒
ε
S

a
2
=

−
ε ∫

t

T

d
t ′

a
2(t ′)

.
(50)

E
q.(5.3.13)

also
tells

us
that

B
=

−
2
ε
S
/
a
2,so

this
calculation

reproduces
the

first
term

in
E
q.

(45),
the

term
that

w
e
dropped

because
it

is
purely

a
gauge

m
ode.

It
does

not
appear

to
be

possible
to

generate
either

of
the

physicalm
odes

in
this

w
ay.

O
ne

should
probably

not
be

surprised
that

this
m
ethod

fails
to

generate
the

full
answ

er,
since

the
boundary

conditions
used

in
these

hom
ogeneous

solutions,
w
ith

ε
i ∝

ω
ij x

j,
are

loose
enough

so
that

the
decom

position
used

in
E
q.

(5.3.13)
is

not
unique.

N
ote

that
in

integrating
Ḃ

to
obtain

B
in

E
q.

(45),
one

could
have

added
a

constant
of

integration
to

the
answ

er,
corresponding

to
a
tim

e-independent
contri-

bution
to

B
.
H
ow

ever,
if
one

looks
at

the
synchronous

gauge
equations

of
m
otion

in
E
qs.

(5.3.28)–(5.3.33),
one

sees
that

B
alw

ay
s
appears

as
Ḃ

or
B̈
.

T
hus

a
tim

e-independent
contribution

to
B

suspiciously
has

no
effect

on
any

of
the

other
variables.

It
turns

out
that

changing
B

by
a
tim

e-independent
function

is
another
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residual
gauge

freedom
of

synchronous
gauge,

one
that

is
not

discussed
in

W
ein-

berg’s
book.

Ifone
thinks

ofsynchronous
gauge

as
an

evolution
ofequal-tim

e
slices,

the
residualgauge

freedom
that

W
einberg

discusses
corresponds

to
choosing

an
ini-

tial
slice

that
is

slightly
offset

in
the

tim
e
direction

from
the

original
choice.

T
he

other
residual

gauge
freedom

is
to

perturb
the

spatial
coordinate

system
on

the
initial

slice.
In

term
s
of

the
form

alism
of

E
q.

(5.3.13),
it

corresponds
to

a
gauge

transform
ation

w
ith

e
S
/
a
2
chosen

to
be

independent
of

tim
e,w

hich
can

be
seen

to
produce

a
tim

e-independent
change

in
B

w
ith

no
change

in
the

other
variables.

In
the

next
problem

w
e
w
illsee

how
B

can
also

be
determ

ined
by

gauge
trans-

form
ing

from
the

N
ew

tonian
gauge.

P
R

O
B

L
E
M

4:
G

A
U

G
E

E
Q

U
IV

A
L
E
N

C
E

O
F

T
H

E
A

D
IA

B
A

T
IC

S
O

L
U

-
T

IO
N

S
IN

S
Y

N
C

H
R

O
N

O
U

S
A

N
D

N
E
W

T
O

N
IA

N
G

A
U

G
E
S

(10
points) ∗

L
et

us
transform

from
N
ew

tonian
gauge

to
synchronous

gauge,
starting

w
ith

the
solution

described
by

W
einberg’s

E
qs.(5.4.14–5.4.18).

T
o
avoid

confusion
w
ith

the
gauge

transform
ation

that
w
e
need

to
describe,

I
w
illadd

a
subscript

to
ε(t)

in
E
q.(5.4.15),w

riting
it
as

εR
=

Ra(t) ∫
t

T
a(t ′)d

t ′
,

(51)

w
hereR

=
13
ω

k
k
and

Ψ
=

Φ
=

−
ε̇R

.
(52)

N
ote

that
these

equations
describe

the
adiabatic

solution,w
hich

due
to

the
im

plicit
e
iq·x

spatialdependence
is
not

a
gauge

transform
ation

ofthe
hom

ogenous
solution.

W
e
now

w
ish

to
find

a
genuine

gauge
transform

ation
that

takes
this

solution
to

synchronous
gauge.

Follow
ing

W
einberg’s

description
starting

w
ith

E
q.(5.3.44),w

e
seek

a
function

ε
0
satisfying

ε̇
0
=

−
Φ
.

(53)

C
learly,

ε
0
=
εR

(54)

satisfies
the

desired
equation.

T
hen,

according
to

E
q.(5.3.46),

A
is

given
by

A
=

−
2Ψ

+
2
H
ε
0
,

(55)
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w
hich

gives

A
=

2
ε̇R

+
2
H
εR

=
2R [(

1−
Ha(t) ∫

t

T
a(t ′)d

t ′ )
+

Ha(t) ∫
t

T
a(t ′)d

t ′ ]

=
2R

=
23
ω

k
k
.

(56)

T
his

agrees
w
ith

the
expression

for
A

in
E
q.

(46),
assum

ing
that

the
synchronous

gauge
solution

constructed
in

P
roblem

3
is
based

on
the

opposite
sign

choice
for

the
m
eaning

of
ω

ij .
T
o
find

the
value

of
B

that
results

from
the

gauge
transform

ation,
w
e
m
ust

solve
∂∂
t (

ε
S

a
2 )

=
−
ε
0

a
2
=

−
εRa

2
.

(57)

U
sing

B
=

−
2a
2
ε
S
and

integrating,w
e
find

B
=

2 ∫
t

T

εR
d
t ′

a
2(t ′)

=
23
ω

k
k ∫

t

T

d
t ′

a
3(t ′) ∫

t ′

T
a(t ′′)d

t ′′.
(58)

T
his

m
atches

the
1st

term
in

E
q.

(47),
again

allow
ing

for
a
sign

change
in

the
m
eaning

of
ω

ij .
B
y
looking

at
the

gauge
transform

ation
equations

(5.3.14),

∆
δp

=
˙̄p
ε
0
,

∆
δρ

=
˙̄ρ
ε
0
,

∆
δu

=
−
ε
0
,

(59)

one
sees

that
values

of
δp,

δρ,
and

δu
in

E
qs.

(40)–(42)
are

canceled
by

the
gauge

transform
ation,

so
that

they
vanish

in
synchronous

gauge.

T
o

find
the

other
B

term
in

the
synchronous

gauge
solution,

w
e
need

to
start

w
ith

the
2nd

adiabatic
solution

in
N
ew

tonian
gauge,

the
one

described
by

E
qs.

(5.4.19–5.4.21).
H
ere

the
solution

can
be

w
ritten

Ψ
=

Φ
=

−
ε̇C

,
(60)

w
here

εC
=

Ca(t)
,
so

Ψ
=

Φ
=

C
H

a(t)
.

(61)

So
the

gauge
transform

ation
uses

ε
0
=
εC ,

and

A
=

−
2Ψ

+
2
H
ε
C
=

0
.

(62)

T
o
find

B
for

this
solution,

w
e
solve

∂∂
t (

ε
S

a
2 )

=
−
ε
C

a
2
=

−
Ca
3
,

(63)
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and
then

B
=

−
2a
2
ε
S
=

2C ∫
t

T

d
t ′

a
3(t ′)

.
(64)

T
his

agrees
w
ith

E
q.(47),if

w
e
take

the
arbitrary

constantC
to

equalB
/2.

T
heC

solution
has

δρ˙̄ρ
=
δp˙̄p

=
−
δu

=
−

Ca(t)
,

(65)

and
it

can
be

seen
that

the
gauge

transform
ation

w
ill

lead
to

these
quantities

van-
ishing

in
synchronous

gauge.

¶
Solution

w
ritten

by
C
arlos

Santana
and

A
lan

G
uth.

†Solution
w
ritten

by
C
arlos

Santana.
∗Solution

w
ritten

by
A
lan

G
uth.


