
$\left(\frac{z^{p}}{z^{p}}+\frac{p}{\underline{n}}\right) \frac{\eta^{\nu} \nabla}{\varepsilon}-=r_{r \underline{L}}$
se p лодวセf ә[eos әч7

We shall assume that the unperturbed metric is the $K=0$ Robertson-Walker (1)

To first order in the perturbations, the purely spatial components of the Ein-
stein equation yield

- neglecting vector modes - given by fect fluid part $\bar{T}_{\mu \nu}$ and the correction $\delta T_{\mu \nu}$. The latter has the spatial components $-8 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T_{\lambda}^{\lambda}\right)$. We decompose $T_{\mu \nu}$ in terms of the unperturbed, per-

[^0]

 with $Z_{i i, q} \equiv 0$ and $q_{j} Z_{j k, q} \equiv 0$, then one can show that X, Y, and Z must vanish

 Or, upon using $h_{j k}=a^{2}\left[A \delta_{j k}+\partial_{j} \partial_{k} B+D_{j k}\right]$, equation (11) becomes $-\left(\frac{a}{a}+\frac{2 \dot{a}^{2}}{a^{2}}\right) h_{j k}$. $-\left(\frac{\ddot{a}}{}+\frac{2 \dot{a}^{2}}{a^{2}}\right) h_{j k}$

Using this information, the $j k$ component of Einstein's equations becomes
$\left(\frac{z^{p}}{z^{p}}+\frac{p}{\underline{n} z}\right) \frac{D^{\Perp} 8}{\mathrm{~L}}-=(7) \underline{d}$

(8L)

should vanish, one finds

about the origin.

 a slightly open or slightly closed Robertson-Walker universe as a perturbation of

 se $?_{\text {? }}$ рие $0_{\text {э }}$
 where $\alpha_{i}(\boldsymbol{x})$ is an arbitrary vector function, to be determined by enforcing homo-
geneity.

 This last equation can be easily solved using an integrating factor $\mu(t)=$ This last equation can be easily solved using an integrating factor $\mu(t)=$ $\frac{\eta Q}{(1 \cdot x)^{2} \partial O} \Longleftarrow$ $\overline{\left(7^{6} \boldsymbol{x}\right)^{?}{ }^{?} \varrho}$
$=0^{n} y \nabla$ ϵ_{0} and ϵ_{i} :
field and conservation equations with:

 We can also find the corresponding expressions for the changes in $\delta p, \delta \rho, \delta u$ and

Thus there is always a spatially homogeneous solution of the synchronous gauge
 Now, since $\left\{h_{\mu \nu}, T_{\mu \nu}\right\}$ and $\left\{h_{\mu \nu}+\Delta h_{\mu \nu}, T_{\mu \nu}+\Delta T_{\mu \nu}\right\}$ are both solutions to the
(2ε)
(98)
(9\&)
(t \&)

${ }^{C_{?}} G \nabla_{z} b+V \nabla^{c_{?}} ?_{z} p={ }^{C_{?}} \psi \nabla$

Upon comparing the parts proprtional to $\delta_{i j}$ and the symmetric, traceless tensor
parts in (30) and (31) we find: ұечұ әәя иеэ

 (0ε) $(6 Z)$

puy

$$
\begin{aligned}
& { }^{\ni} \boldsymbol{\partial} \underline{d}=0 \ni \underline{d}=d \rho \nabla
\end{aligned}
$$

 -әnbiun

 does not appear to be possible to generate either of the physical modes in this way,
 Eq. (5.3.13) also tells us that $B=-2 \epsilon^{S} / a^{2}$, so this calculation reproduces the first

$$
\frac{(1,)_{z^{b}}}{\partial \mathrm{P}} \int_{\downarrow}^{L} \ni-=\frac{z^{b}}{S^{\ni}} \Longleftarrow \ni-=\left(\frac{z^{b}}{S^{\ni}}\right) \frac{\not \mathrm{p}}{\mathrm{p}} z^{D}
$$

 - $\left(s^{\ni} \frac{p}{y_{Z}}+s^{\text {Э }}-0^{\text {Э }}-\right) \frac{p}{\mathrm{~L}}=H \nabla$
seems to have been slightly exaggerated. Eq. (5.3.13) says that The statement in the Problem Set that B can be found by using Eq. (5.3.13)

(67)

$\stackrel{\overparen{*}}{\infty}$

 satisfied.
 solution described in Problem 2, $A=-\frac{2}{3} \omega_{k k}+2 H \epsilon$, and $\delta u=-\epsilon$, as described in

*(squ!od PROBLEM 3: CONSTRUCTION OF ADIABATIC SOLUTIONS (10

(\&7)	$\cdot 0={ }_{S}{ }^{\downarrow}$
(7ヵ)	${ }^{\prime} \mathrm{O}-=n \varrho$
(tı)	${ }^{\prime} \underline{\underline{d}}=d_{\rho}$
(0才)	${ }{ }^{\underline{\mathrm{C}}} \mathbf{}=d \rho$
(68)	
(88)	${ }^{\prime} H z+y^{\prime} m \frac{\varepsilon}{z}-=V$
$L \cdot d$	600% פNIYdS 'SNOIL^T

$\Leftrightarrow, \not \mathrm{p}(, 7) p{ }_{7}^{L} \frac{(7) p}{\mathfrak{L}}=\mathfrak{z}_{\ni}$	

 * (szuıod
OI) SЯĐ

 initial slice. In terms of the formalism of Eq. (5.3.13), it corresponds to a gauge other residual gauge freedom is to perturb the spatial coordinate system on the tial slice that is slightly offset in the time direction from the original choice. The the residual gauge freedom that Weinberg discusses corresponds to choosing an iniberg's book. If one thinks of synchronous gauge as an evolution of equal-time slices, residual gauge freedom of synchronous gauge, one that is not discussed in Wein-

 $\cdot 0_{\ni}-=n \varrho \nabla \quad \quad 0_{\ni} \underline{d}=d \rho \nabla \quad ، 0_{\ni} \underline{d}=d \rho \nabla$

(69)
d

This agrees with the expression for A in Eq. (46), assuming that the synchronous

whr $+w_{2}=v$

Og

(〔9)$\cdot \frac{(7) p}{\partial}-=n \varrho-=\frac{\underline{d}}{d \varrho}=\frac{\underline{d}}{d \varrho}$		
(モ9)$\cdot \frac{(\nexists)_{\varepsilon} b}{\neg \mathrm{P}} \int_{q}^{L} \partial \tau=S^{\ni} \frac{z^{p}}{\tau}-=q$		
II $\cdot d$	6007 ĐNIUdS 'SNOI	TGOЧd 7¢6*8

[^0]: $-\frac{1}{2} \ddot{h}_{j}$

 $+$

 $$
 \begin{aligned}
 & p p)- \\
 & { }^{4} e^{c} e- \\
 & { }^{c} c^{c} e^{-}-
 \end{aligned}
 $$

 $$
 \frac{p_{Z}}{p}
 $$

 $\left[(a \ddot{a}+2 \dot{a}) A+3 a \dot{a} \dot{a}+\frac{1}{2}\right.$

 $$
 \begin{aligned}
 & { }^{c} T p p \frac{Z}{\mathcal{Z}}-
 \end{aligned}
 $$

