Basic Notation

∪ \(A \cup B \) denotes the union of sets \(A \) and \(B \)
∩ \(A \cap B \) denotes the intersection of the sets \(A \) and \(B \)
⊂ \(A \subset B \) denotes that \(A \) is a subset of \(B \).
 (May or may not mean proper subset.)
− \(B - A \) denotes the complement in \(B \) of the set \(A \)
∈ \(p \in A \) denotes that \(p \) is an element of \(A \)
\{\} \(\{p \in A | Q\} \) denotes the set consisting of those elements
 \(p \) of the set \(A \) which satisfy condition \(Q \)
× Cartesian product; \(A \times B \) is the set \(\{(a, b) | a \in A \text{ and } b \in B\} \)
∅ the empty set

\(\mathbb{R} \) the set of real numbers
\(\mathbb{R}^n \) the set of \(n \)-tuples of real numbers
\(\mathbb{C} \) the set of complex numbers
\(\mathbb{C}^n \) the set of \(n \)-tuples of complex numbers
\(f : A \rightarrow B \) denotes that \(f \) is a map from the set \(A \)
 to the set \(B \)
\(f \circ g \) denotes the composition of maps \(g : A \rightarrow B \)
 and \(f : B \rightarrow C \), i.e., for \(p \in A \) we have
 \((f \circ g)(p) = f[g(p)] \)
\(f[A] \) denotes the image of the set \(A \) under the
 map \(f \), i.e., the set \(\{f(x) | x \in A\} \)

\(C^0 \) the set of \(n \)-times continuously differentiable functions.
 Note that \(C^0 \) means simply continuous, while \(C^1 \)
 means that the first derivative exists and is continuous.
\(C^\infty \) the set of infinitely continuously differentiable
 (i.e., smooth) functions
\(\exists \) there exists; i.e., for all \(u \in \mathbb{R} \), \(\exists \ v \ | \ v + u = 0 \)
\(\forall \) for all; i.e., \(\forall u \in \mathbb{R} \), \(\exists \ v \ | \ v + u = 0 \)
If f is a function $f : M \to N$, M is called the **domain** of f, and N is called its **codomain**.

The set of points in N that M gets mapped into is called the **image** of f.

For any subset $U \subset N$, the set of elements of M that get mapped to U is called the **preimage** of U, or $f^{-1}(U)$.

A map $f : M \to N$ is called **one-to-one** (or **injective**) if each element of N has at most one element of M mapped into it.

A map $f : M \to N$ is called **onto** (or **surjective**) if each element of N has at least one element of M mapped into it.

A map that is both one-to-one and onto is known as **invertible** (or **bijective**). In this case we can define the inverse map $f^{-1} : N \to M$ by $(f^{-1} \circ f)(x) = x$, for any $x \in M$.

(Weierstrass definition): For functions $f : D \to \mathbb{R}$, where $D \subset \mathbb{R}$, $f(x)$ is continuous at x_0 if and only if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$.

(General topological definition): If open sets have been defined, then a function $f : X \to Y$ is continuous if and only if the preimage $f^{-1}(V)$, where V is an open subset of Y (which could be the whole set), is always an open subset of X.

For the usual definition of open sets on \mathbb{R}, the two definitions are equivalent.

If $f : D \to \mathbb{R}^n$, where $D \subset \mathbb{R}^m$, then the definition of continuity is a natural generalization of the $\mathbb{R} \to \mathbb{R}$ definition.

f can be described as a collection of functions $f^i(x^1, x^2, \ldots, x^m)$, where $i = 1, \ldots, n$. f is C^p if each f^i is at least C^p in each of the variables (x^1, x^2, \ldots, x^m).

Suppose that M and N are topological spaces (i.e., spaces on which open sets have been defined). Then if $f : M \to N$ is continuous, one-to-one, and onto, and its inverse is continuous, then f is called a **homeomorphism**, and the spaces M and N are said to be **homeomorphic**. As far as topology is concerned, M and N are then identical. (See Wald. Carroll never uses the word “homeomorphic”.)
Suppose that M and N are manifolds (to be defined shortly). Then if $f : M \to N$ is C_∞, one-to-one, and onto, and its inverse is C_∞, then f is called a **diffeomorphism**, and the spaces M and N are said to be **diffeomorphic**. As far as manifold properties are concerned, M and N are then identical.

An **open ball** is the set of all points x in \mathbb{R}^n such that $|x - y| < r$ for some fixed $y \in \mathbb{R}^n$ and $r \in \mathbb{R}$, where $|x - y|^2 = \sum_i (x_i - y_i)^2$. Note that $|x - y|$ must be less than r. The ball does not include its boundary. An **open set** in \mathbb{R}^n is a set constructed from an arbitrary (maybe infinite) union of open balls. Equivalently, a set $V \subset \mathbb{R}^n$ is open if, for any $y \in V$, there is an open ball centered at y that is completely inside V.

A This entry has been corrected from the version shown in lecture, which mistakenly omitted the requirement that f and f^{-1} must be C_∞.

A C_∞ **atlas** of charts is a collection of charts $\{(U_\alpha, \phi_\alpha)\}$ that satisfies two conditions:

1) The U_α cover M, so that any point in M is contained in at least one chart U_α.

2) The charts smoothly sew together. Whenever two charts overlap, the map from one coordinate system to the other must be C_∞. In symbols, whenever $U_\alpha \cap U_\beta \neq \emptyset$, the map $\phi_\alpha \circ \phi_\beta^{-1}$ takes points in $\phi_\beta(U_\alpha \cap U_\beta) \subset \mathbb{R}^n$ onto the open set $\phi_\alpha(U_\alpha \cap U_\beta) \subset \mathbb{R}^n$. All such maps must be C_∞ where they are defined.
A C^∞ n-dimensional manifold (or n-manifold for short) is simply a set M along with a maximal atlas, one that contains every possible compatible chart.