8.962 Lecture 10 March 12, 2018

MATHEMATICAL CONCEPTS and DEFINITIONS

Basic Notation

- \cup $A \cup B$ denotes the union of sets A and B
- \cap A \cap B denotes the intersection of the sets A and B
- \subset $A \subset B$ denotes that A is a subset of B.
 - (May or may not mean proper subset.)
- B-A denotes the complement in B of the set A
- \in $p \in A$ denotes that p is an element of A
- $\{|\}$ $\{p \in A|Q\}$ denotes the set consisting of those elements
 - p of the set A which satisfy condition Q
- \times Cartesian product; $A \times B$ is the set $\{(a,b)|a \in A \text{ and } b \in B\}$
- \emptyset the empty set

 \mathbb{R} the set of real numbers

 \mathbb{R}^n the set of *n*-tuples of real numbers

 \mathbb{C} the set of complex numbers

 \mathbb{C}^n the set of *n*-tuples of complex numbers

 $:\to f:A\to B$ denotes that f is a map from the set A to the set B

 \circ $f \circ g$ denotes the composition of maps $g: A \to B$ and $f: B \to C$, i.e., for $p \in A$ we have $(f \circ g)(p) = f[g(p)]$

[] f[A] denotes the image of the set A under the map f, i.e., the set $\{f(x)|x\in A\}$

the set of n-times continuously differentiable functions. Note that C^0 means simply continuous, while C^1 means that the first derivative exists and is continuous.

 C^{∞} the set of infinitely continuously differentiable (i.e., smooth) functions

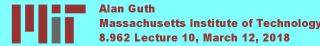
 \exists there exists; i.e., for all $u \in \mathbb{R}$, $\exists v \mid v + u = 0$

 \forall for all; i.e., $\forall u \in \mathbb{R}, \exists v \mid v + u = 0$

Properties of Maps

- If f is a function $f: M \to N$, M is called the **domain** of f, and N is called its **codomain**.
- The set of points in N that M gets mapped into is called the **image** of f.
- For any subset $U \subset N$, the set of elements of M that get mapped to U is called the **preimage** of U under f, or $f^{-1}(U)$.
- A map $f: M \to N$ is called **one-to-one** (or **injective**) if each element of N has at most one element of M mapped into it.
- A map $f: M \to N$ is called **onto** (or **surjective**) if each element of N has at least one element of M mapped into it.

A map that is both one-to-one and onto is known as **invertible** (or **bijective**). In this case we can define the inverse map $f^{-1}: N \to M$ by $(f^{-1} \circ f)(x) = x$, for any $x \in M$.



Continuity

- (Weierstrass definition): For functions $f: D \to \mathbb{R}$, where $D \subset \mathbb{R}$, f(x) is continuous at x_0 if and only if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|x-x_0| < \delta \implies |f(x)-f(x_0)| < \epsilon$.
- General topological definition): If open sets have been defined, then a function $f: X \to Y$ is continuous if and only if the preimage $f^{-1}(V)$, where V is an open subset of Y (which could be the whole set), is always an open subset of X.
- For the usual definition of open sets on \mathbb{R} , the two definitions are equivalent.

If $f: D \to \mathbb{R}^n$, where $D \subset \mathbb{R}^m$, then the definition of continuity is a natural generalization of the $\mathbb{R} \to \mathbb{R}$ definition. f can be described as a collection of functions

$$f^i(x^1, x^2, \dots, x^m) ,$$

where i = 1, ..., n. f is C^p if each f^i is at least C^p in each of the variables $(x^1, x^2, ..., x^m)$.

Suppose that M and N are topological spaces (i.e., spaces on which open sets have been defined). Then if $f: M \to N$ is continuous, one-to-one, and onto, and its inverse is continuous, then f is called a **homeomorphism**, and the spaces M and N are said to be **homeomorphic**. As far as topology is concerned, M and N are then identical. (See Wald. Carroll never uses the word "homeomorphic".)

- Suppose that M and N are manifolds (to be defined shortly). Then if $f: M \to N$ is C^{∞} , one-to-one, and onto, and its inverse is C^{∞} , then f is called a **diffeomorphism**, and the spaces M and N are said to be **diffeomorphic**. As far as manifold properties are concerned, M and N are then identical.*
- An **open ball** is the set of all points x in \mathbb{R}^n such that |x-y| < r for some fixed $y \in \mathbb{R}^n$ and $r \in \mathbb{R}$, where $|x-y|^2 = \sum_i (x^i y^i)^2$. Note that |x-y| must be less than r. The ball does not include its boundary.
- An **open set** in \mathbb{R}^n is a set constructed from an arbitrary (maybe infinite) union of open balls. Equivalently, a set $V \subset \mathbb{R}^n$ is open if, for any $y \in V$, there is an open ball centered at y that is completely inside V.

^{*}This entry has been corrected from the version shown in lecture, which mistakenly omitted the requirement that f and f^{-1} must be C^{∞} .

MANIFOLDS!

If M is a set, a **chart** or **coordinate system** on M is a one-to-one map $\phi: U \to \mathbb{R}^n$ such that the image $\phi(U)$ of the map is an open subset of \mathbb{R}^n . We do not assume a topology on M, so U is said to be open in M if $\phi(U)$ is open in \mathbb{R}^n .

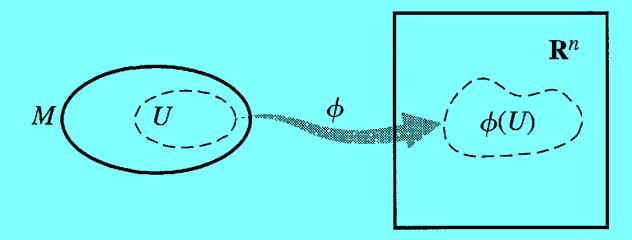


FIGURE 2.13 A coordinate chart covering an open subset U of M.

(From Sean Carroll, Spacetime and Geometry.)

- A C^{∞} atlas of charts is a collection of charts $\{(U_{\alpha}, \phi_{\alpha})\}$ that satisfies two conditions:
 - 1) The U_{α} cover M, so that any point in M is contained in at least one chart U_{α} .
 - 2) The charts smoothly sew together. Whenever two charts overlap, the map from one coordinate system to the other must be C^{∞} . In symbols, whenever $U_{\alpha} \cap U_{\beta} \neq 0$, the map $(\phi_{\alpha} \circ \phi_{\beta}^{-1})$ takes points in $\phi_{\beta}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n}$ onto the open set $\phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n}$. All such maps must be C^{∞} where they are defined.

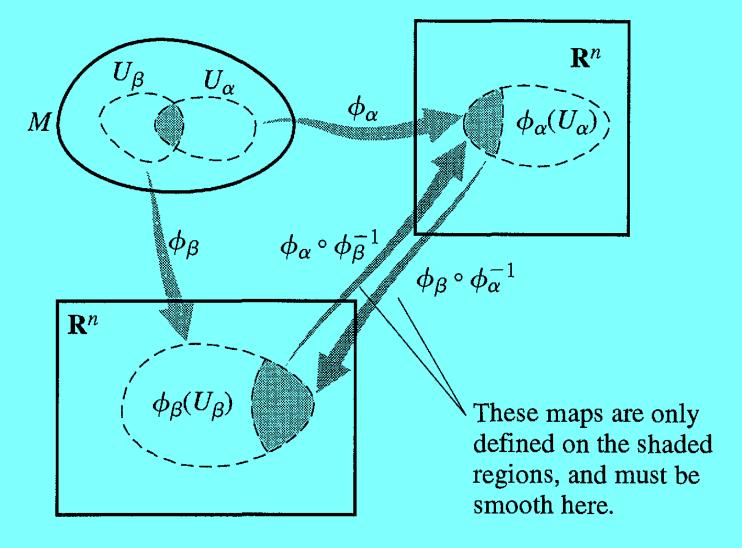


FIGURE 2.14 Overlapping coordinate charts.

(From Sean Carroll, Spacetime and Geometry.)

A C^{∞} *n*-dimensional **manifold** (or *n*-manifold for short) is simply a set M along with a maximal atlas, one that contains every possible compatible chart.