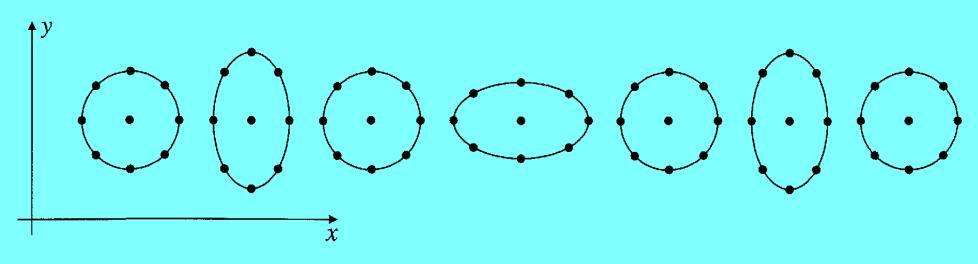
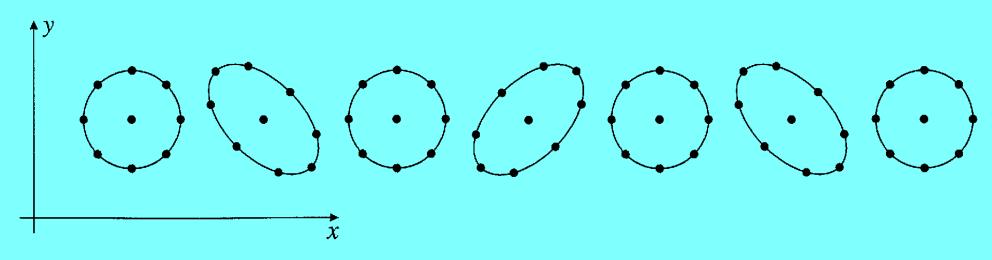
8.962 Lecture 27 (Post-term) May 24, 2018


GRAVITATIONAL RADIATION

Carroll's Highbrow & Lowbrow Approaches to Gauge Invariance

Highbrow: coordinate-invariant description of coordinate transformations: 2 pages of text, referring to 9-page long Appendix B.

Lowbrow: Gauge invariance can also be understood from the slightly more lowbrow but considerably more direct route of infinitesimal coordinate transformations. Our diffeomorphism ψ_{ϵ} , can be thought of as changing coordinates from x^{μ} to $x^{\mu} - \epsilon \xi^{\mu}$ Following through the usual rules for transforming tensors under coordinate transformations, you can derive precisely (7.14)– $[h_{\mu\nu}^{(\epsilon)} = h_{\mu\nu} + 2\epsilon \partial_{(\mu} \xi_{\nu)}]$ although you have to cheat somewhat by equating components of tensors in two different coordinate systems.


Gravitational Wave with + Polarization

(From Sean Carroll, Spacetime and Geometry, Figure 7.4))

The effect of a gravitational wave with polarization $e_{11} = -e_{22}$ is to distort a circle of test particles into ellipses oscillating in a vertical and horizontal pattern.

Gravitational Wave with imes Polarization

(From Sean Carroll, Spacetime and Geometry, Figure 7.5))

The effect of a gravitational wave with polarization $e_{12} = e_{21}$ is to distort a circle of test particles into oscillating ellipses, at 45° relative to the previous diagram.