1.1 Taylor Expansions

Problem 1.1: Construct the Taylor series to 3 rd order for $\tan (x)$ and $\tanh (x)$ expanded around $x=0$.

Problem 1.2: Calculate the Taylor expansion in two-dimensions of the functions

$$
\begin{equation*}
\text { (a) } f(x, y)=\frac{x^{2}}{x y+1}, \quad \text { (b) } g(x, y)=e^{x \sin (y)} \tag{1.1.1}
\end{equation*}
$$

around the point $(x, y)=(0,0)$.

Problem 1.3: Consider the function

$$
\begin{equation*}
f(x)=\frac{1}{1-x} \tag{1.1.2}
\end{equation*}
$$

and write down the Taylor expansion around $x=0$. Now define the truncated Taylor expansion

$$
\begin{equation*}
f_{N}(x)=\sum_{n=0}^{N} \frac{1}{n!} \frac{d^{n} f}{d x^{n}} x^{n} \tag{1.1.3}
\end{equation*}
$$

As a function of how many terms you keep in the truncation, plot $\left|f_{N}(x)-f(x)\right|$ at $x=\frac{1}{2}$ and at $x=\frac{3}{2}$. Comment on what you see.

Problem 1.4: Consider the function

$$
f(x)= \begin{cases}0 & x=0 \tag{1.1.4}\\ e^{-\frac{1}{x^{2}}} & x \neq 0\end{cases}
$$

and investigate its Taylor series expanded around $x=0$ by calculating its derivatives. Does the Taylor expansion converge for any x ?

Problem 1.5: Solve the equation

$$
\mathrm{e}^{y-1}=1-\epsilon y
$$

for $y(\epsilon)$ to second order in the small parameter ϵ, using the ansatz $y(\epsilon)=y_{0}+y_{1} \epsilon+\frac{1}{2!} y_{2} \epsilon^{2}+$ $\mathcal{O}\left(\epsilon^{3}\right)$. Use both of the following approaches.

1. Method 1: expansion of equation. Insert the ansatz for $y(\epsilon)$ into the given equation, Taylor expand each term to order $\mathcal{O}\left(\epsilon^{2}\right)$, and collect terms having the same power of ϵ to obtain an equation of the form $0=\sum_{n} F_{n} \epsilon^{i}$. The coefficient of each ϵ^{n} must vanish, yielding a hierarchy of equations, $F_{n}=0$. Starting from $n=0$, solve these successively for the y_{n}, using knowledge of the previously determined $y_{i<n}$ at each step. [Check your results: $y_{2}=1$.
2. Method 2: repeated differentiation. Method 1 can be viewed from the following perspective: the given equation is written in the form $0=\mathcal{F}(y(\epsilon), \epsilon) \equiv F(\epsilon)$, and the r.h.s. is brought into the form $\sum_{n} F_{n} \epsilon^{n}$. The latter process can be streamlined by realizing that $F_{n}=\left.\frac{1}{n!} \mathrm{d}_{\epsilon}^{n} F(\epsilon)\right|_{\epsilon=0}$ Hence, the nth equation in the hierarchy, $F_{n}=0$, can be set up by simply differentiating the given equation n times and then setting ϵ to zero, $0=\left.\mathrm{d}_{\epsilon}^{n} F(\epsilon)\right|_{\epsilon=0}$. Use this approach to find a hierarchy of equations for y_{0}, y_{1} and y_{2}. Hint: since $F(\epsilon)$ depends on ϵ both directly and via $y(\epsilon)$, the chain rule must be used when computing derivates, e.g. $\mathrm{d}_{\epsilon} F(\epsilon)=\partial_{y} \mathcal{F}(y, \epsilon) y^{\prime}+\partial_{\epsilon} \mathcal{F}(y, \epsilon)$
3. Method 2 has the advantage that it systematically proceeds order by order: information from $\mathcal{O}\left(\epsilon^{n}\right)$ is generated at just the right time, namely when it is needed in step n for computing y_{n}. As a result, this method is often more convenient than method 1, particularly if the dependence of $\mathcal{F}(y, \epsilon)$ on y is nontrivial. Using this idea, use mathematica to compute $y(\epsilon)$ to 8th order in ϵ.

Problem 1.6: What order ODEs are the following? Are they linear or non-linear?

1. $\frac{d^{3} y}{d x^{3}}+\sin (x) \frac{d^{2} y}{d x^{2}}=x^{3} y(x)$
2. $\frac{d x}{d t}-x^{2}(t)=2 t^{2} x(t)$
3. $\frac{d x}{d t}=2 t^{2} x(t)$

Problem 1.7: Check explicitly that the series in Eq. (1.1.15) solves $\dot{x}=-\gamma x$.

Problem 1.8: A second order ODE such as (1.1.17) requires two boundary conditions to solve. What happens if three boundary conditions (eg, $\left.x(0), x^{\prime}(0), x^{\prime}(1)\right)$ are specified?

Problem 1.9: Derive the expressions for the series expansions of the cosine ans sine functions and verify Eq. (1.1.18).

Problem 1.10: For a particle moving in a potential $V(x)=x^{4}-x^{3}-24 x^{2}+9 x-180=$ $(x-3)(x+3)(x-5)(x+4)$, describe the motion if the inital poistion is $x(0)=1,3,7$.

