### 1.2 First order ordinary differential equations

Problem 1.11: By thinking about finite difference approximations to derivatives, verify Eq. (1.2.3).

Problem 1.12: Solve the ODE $\ddot{x}=-\omega_{0}^{2} x$ using the general method, assuming energy $E$, and starting from $x(t=0)=x_{0}$.

Problem 1.13: Find the solution $x(t)$ for the position of a particle satisfying $\dot{x}=F(x)$ with $F(x)=\alpha x^{2}$.

Problem 1.14: Use a computer algebra program such as mathematica to solve the ODE subject to the given conditions

$$
\left.y^{\prime}(x)=y(x) \cos (x y(x))\right), \quad y(0)=1
$$

and plot the result for $\mathrm{y}(\mathrm{x})$ over the range $-5 \leq x \leq 5$.

Problem 1.15: Instead of logistic growth, with $G(N)=g_{0}+g_{1} N+g_{2} N^{2}$ in Eq. (1.2.6), solve for the growth curve $N(t)$ in the case that $G(N)=g_{1} N+g_{4} N^{4}$.

Problem 1.16: Consider a population of excited atoms undergoing spontaneous decay that are replenished by a pumping mechanism at a rate that depends on the square of the number of atoms currently excited, such that the number of excited atoms at a given time, $N(t)$, satisfies

$$
\frac{d N}{d t}=-\lambda N+\alpha N^{2}
$$

If there are initially $N_{0}$ excited atoms present, find $N(t)$ at later times, and comment on the results if $\lambda / \alpha$ is greater than, less than, or equal to $N_{0}$.

Problem 1.17: An object of mass $m$ initially at rest at $z=z_{0}>0$ (positive $z$ is up) falls under gravity in a resistive medium where the resistivity, $\eta$, is height dependent. The motion satisfies the equation

$$
m \frac{d v}{d t}=\eta(z) v^{2}-m g
$$

where $\eta(z)$ is the coefficient of resistance at a distance $z$ into the medium. [Upwards is taken as the positive $z$ direction. ]

1. Rewrite this equation such that the independent variable is $z$ and the dependent variable is $v$.
2. Show that the resultant equation is inexact, and determine the integrating factor.
3. What is the velocity of the object as a function of distance if

$$
\eta(z)=\frac{1}{2} \lambda(1-\tanh [(\lambda / m) z])
$$

4. What is the terminal velocity of the particle for $\eta$ as given in part (c)?

Problem 1.18: Use the mathematica function DSolve[eqn, $\mathrm{y}[\mathrm{x}], \mathrm{x}]$ to find the generic form of solutions to the $\operatorname{ODE} y^{\prime}(x)=y^{n}(x)$ and verify your result.

Problem 1.19: An example with a fold bifurcation perhaps - not sure if this is too much of an extension of the problems in lectures ?

Consider the equation

$$
\begin{equation*}
\frac{d x}{d t}=f(x, c)=x(x-1)+c \tag{1.2.1}
\end{equation*}
$$

and analyze the lines of equilibrium in th $\{x, c\}$ plane.

Problem 1.20: The bifurcations we encountered correspond to points in parameter space of the ODE $\dot{y}=\phi(y)$ when two fixed points (solutions to $\phi\left(y^{*}\right)=0$ collide or merge. This is required by the analytic continuity of the Taylor expansion of the function $\phi(y)$. The same continuity requires the alternation of stable and unstable fixed points observed in the above examples. For the same reason a fixed point cannot appear or disappear in isolation, but must do so by merging with another fixed point.

If we do not insist upon maintaining a stable fixed point as we have done so far, other forms of bifurcation are possible. For example, a mechanism by which a pair of fixed points disappear is provided by

$$
\begin{equation*}
\dot{y}=\epsilon-y^{2}, \tag{1.2.2}
\end{equation*}
$$

where a pair of fixed points (one stable and one unstable), absent for $\epsilon<0$, is created (at $\pm \sqrt{\epsilon}$ ) for $\epsilon>0$.

Conversely for

$$
\begin{equation*}
\dot{y}=\epsilon+y^{2}-y^{3}, \tag{1.2.3}
\end{equation*}
$$

the pair of stable/unstable fixed points (with eigenvalues $\pm \sqrt{\epsilon}$ ) collide and disappear for $\epsilon>0$ in a fold bifurcation. Note that to prevent divergence to infinity a stabilizing term $-y^{3}$ is added to the equation. For small $\epsilon$, this leads to an additional stable fixed point at $y^{*} \approx 1$. Outcomes attracted to the stable fixed point at $-\sqrt{-\epsilon}$ for $\epsilon<0$ now jumps discontinuously to $y^{*} \approx 1$ for $\epsilon>0$.

1. Find and sketch the potentials that lead to the above ODEs via gradient descent.
2. Find the solutions $y(t)$ to the above equations starting from $y(t=0)=y_{0}$.

Problem 1.21: Plot the solutions (1.2.10) and (1.2.14) for $r=\epsilon=0.1,0.01,0.001$ and compare their large $t$ behaviour to that in (1.2.16), $y(t) \sim t^{-1 /(p-1)}$ for $p=2,3$ respectively.

