
1.2 First order ordinary di↵erential equations

Problem 1.11: By thinking about finite di↵erence approximations to derivatives, verify
Eq. (1.2.3).

Problem 1.12: Solve the ODE ẍ = �!
2
0x using the general method, assuming energy E,

and starting from x(t = 0) = x0.

Problem 1.13: Find the solution x(t) for the position of a particle satisfying ẋ = F (x)
with F (x) = ↵x

2.

Problem 1.14: Use a computer algebra program such as mathematica to solve the ODE
subject to the given conditions

y
0(x) = y(x) cos(xy(x))), y(0) = 1

and plot the result for y(x) over the range �5  x  5.

Problem 1.15: Instead of logistic growth, with G(N) = g0 + g1N + g2N
2 in Eq. (1.2.6),

solve for the growth curve N(t) in the case that G(N) = g1N + g4N
4.

Problem 1.16: Consider a population of excited atoms undergoing spontaneous decay
that are replenished by a pumping mechanism at a rate that depends on the square of the
number of atoms currently excited, such that the number of excited atoms at a given time,
N(t), satisfies

dN

dt
= ��N + ↵N

2
.

If there are initially N0 excited atoms present, find N(t) at later times, and comment on the
results if �/↵ is greater than, less than, or equal to N0.

Problem 1.17: An object of mass m initially at rest at z = z0 > 0 (positive z is up)
falls under gravity in a resistive medium where the resistivity, ⌘, is height dependent. The
motion satisfies the equation

m
dv

dt
= ⌘(z)v2 �mg

where ⌘(z) is the coe�cient of resistance at a distance z into the medium. [Upwards is taken
as the positive z direction. ]

1. Rewrite this equation such that the independent variable is z and the dependent vari-
able is v.
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2. Show that the resultant equation is inexact, and determine the integrating factor.

3. What is the velocity of the object as a function of distance if

⌘(z) =
1

2
�(1� tanh[(�/m)z])

4. What is the terminal velocity of the particle for ⌘ as given in part (c)?

Problem 1.18: Use the mathematica function DSolve[eqn,y[x],x] to find the generic
form of solutions to the ODE y

0(x) = y
n(x) and verify your result.

Problem 1.19: An example with a fold bifurcation perhaps - not sure if this is too much
of an extension of the problems in lectures ?

Consider the equation
dx

dt
= f(x, c) = x(x� 1) + c (1.2.1)

and analyze the lines of equilibrium in th {x, c} plane.

Problem 1.20: The bifurcations we encountered correspond to points in parameter space
of the ODE ẏ = �(y) when two fixed points (solutions to �(y⇤) = 0 collide or merge. This is
required by the analytic continuity of the Taylor expansion of the function �(y). The same
continuity requires the alternation of stable and unstable fixed points observed in the above
examples. For the same reason a fixed point cannot appear or disappear in isolation, but
must do so by merging with another fixed point.

If we do not insist upon maintaining a stable fixed point as we have done so far, other
forms of bifurcation are possible. For example, a mechanism by which a pair of fixed points
disappear is provided by

ẏ = ✏� y
2
, (1.2.2)

where a pair of fixed points (one stable and one unstable), absent for ✏ < 0, is created (at
±
p
✏) for ✏ > 0.
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Conversely for
ẏ = ✏+ y

2
� y

3
, (1.2.3)

the pair of stable/unstable fixed points (with eigenvalues ±
p
✏) collide and disappear for

✏ > 0 in a fold bifurcation. Note that to prevent divergence to infinity a stabilizing term �y
3

is added to the equation. For small ✏, this leads to an additional stable fixed point at y⇤ ⇡ 1.
Outcomes attracted to the stable fixed point at �

p
�✏ for ✏ < 0 now jumps discontinuously

to y
⇤
⇡ 1 for ✏ > 0.

1. Find and sketch the potentials that lead to the above ODEs via gradient descent.

2. Find the solutions y(t) to the above equations starting from y(t = 0) = y0.

Problem 1.21: Plot the solutions (1.2.10) and (1.2.14) for r = ✏ = 0.1, 0.01, 0.001 and
compare their large t behaviour to that in (1.2.16), y(t) ⇠ t

�1/(p�1) for p = 2, 3 respectively.
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