1.3 Second order ordinary differential equations

Problem 1.22: Find values of k so that $y=\mathrm{e}^{k x}$ is a solution of:

$$
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=0
$$

Hence state the general solution.

Problem 1.23: Find the general solution of: $\frac{d^{2} y}{d x^{2}}+4 y=0$

Problem 1.24: Given $a y^{\prime \prime}+b y^{\prime}+c y=0$, write down the auxiliary equation. If the roots of the auxiliary equation are complex (one root will always be the complex conjugate of the other) and are denoted by $k_{1}=\alpha+\beta \mathrm{i}$ and $k_{2}=\alpha-\beta \mathrm{i}$ show that the general solution is:

$$
y(x)=\mathrm{e}^{\alpha x}(A \cos \beta x+B \sin \beta x)
$$

Problem 1.25: Find the auxiliary equation for the differential equation $L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{1}{C} i=0$ Hence write down the general solution.

Problem 1.26: Use a computer algebra program such as mathematica to solve the ODE subject to the given conditions

$$
\left.y^{\prime \prime}(x)=y^{\prime}(x) \cos (x y(x))\right), \quad y(0)=1, y^{\prime}(1)=0
$$

and plot the result for $\mathrm{y}(\mathrm{x})$ over the range $-5 \leq x \leq 5$.

Problem 1.27:

1. Write down the general solution for the differential equation

$$
\frac{d^{2} y}{d t^{2}}+y=\cos r t
$$

and by substituting a suitable trial function, determine a particular integral for $r \neq 1$.
2. Express the complete solution to this equation in terms of the initial values $y(0)$ and $\dot{y}(0)$
3. By taking the limit of $r \rightarrow 1$ of the complete solution, determine the solution of this equation for $r=1$.
4. Show that the same result follows if a trial solution $y_{p}=t(A \cos t+B \sin t)$ is used to determine the particular integral.

Problem 1.28: Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=(1+x) e^{-x} ; \quad y(0)=0, \quad y^{\prime}(0)=1
$$

by solving first for the general solution of the homogenous equation, and looking for an appropriate trial function to obtain a particular integral.

Problem 1.29: Show Eq. (1.3.6). What are the initial position and velocity of the solution in (1.3.6)

Problem 1.30: Generalise the discussion of beats to the case where one tuning fork has twice the amplitude of the other.

Problem 1.31: Plot and discuss the position, velocity and acceleration of the solution $x=\tanh (t)$ in ()1.3.18).

