2.1 Two variables

Problem 2.1: Find the general solution to the system of differential equations

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1}+x_{2} \\
\frac{d x_{2}}{d t} & =4 x_{1}+x_{2}
\end{aligned}
$$

that is, the homogeneous linear system of ODEs with constant coefficients

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x}
$$

1. Compute the eigenvalues and eigenvectors of the coefficient matrix \mathbf{A}.
2. Use these eigenvalues and eigenvectors to form the change of basis matrix \mathbf{O} and the diagonal matrix \mathbf{D} such that

$$
\mathbf{D}=\mathrm{O}^{-1} \mathbf{A O}
$$

3. Write down the general solution of the diagonalised system in which the transformed degrees of freedom $\mathbf{z}=\mathbf{C}^{-1} \mathbf{x}$ have decoupled

$$
\frac{d \mathbf{z}}{d t}=\mathbf{D} \mathbf{z} \quad \Longrightarrow \quad \mathbf{z}=\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

where the λ_{i} are the eigenvalues of \mathbf{A}.
4. Finally, construct the solution of the original (coupled) system as

$$
\mathrm{x}=\mathrm{Oz}
$$

Problem 2.2: Solve the following system of equations

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-1 & -\frac{1}{2}
\end{array}\right] \mathbf{x}
$$

where $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Plot trajectories of the two solutions in the $x_{1}-x_{2}$ plane using the ParametricPlot[] function in mathematica.

Problem 2.3: Solve the system

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Note that this has only a single eigenvector so a second solution must be found.

Problem 2.4: The equation of motion for a system of a spring and mass with damping is

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0
$$

where m, c, k are the mass, damping coefficient and spring force constant respectively, and all are positive constants.

1. Write this equation as a system of two first order equations for $u_{1}(t)=x(t)$ and $u_{2}(t)=\frac{d u_{1}}{d t}$
2. Show that $u_{1}=0, u_{2}=0$ is a critical point where $\frac{d u_{1}}{d t}=\frac{d u_{2}}{d t}=0$ and analyze the nature and stability of the critical point as a function of the parameters m, c and k.
