3.2 Solving PDEs

Problem 3.3: Show using a change of variables to $\xi=x+c t$ and $\eta=x-c t$ and subsequent direct integration that

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

has the general solution

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

where f and g are twice differentiable functions.

Problem 3.4: Consider a rod of length L. Find the solution $u=u(x, t)$ to the heat equation

$$
\frac{\partial u}{\partial t}-6 \frac{\partial^{2} u}{\partial x^{2}}=0 \quad \text { for } \quad 0<x<L \quad \text { and } \quad 0<t
$$

that also satisfies the boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0 \quad \text { for } \quad 0<t
$$

and the initial conditions

$$
u(x, 0)=u_{0}(x) \quad \text { for } \quad 0<x<L
$$

where u_{0} is some known function.

Problem 3.5: The wave equation descriibing a plucked string in the presence of damping takes the form

$$
\begin{array}{r}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=-\kappa \frac{\partial u}{\partial t}-\text { for } 0<x<L \\
u(0, t)=0 \text { and } u(L, t)=0
\end{array}
$$

where the drag coefficient κ is a non-negative constant.
Show through separation of variables that for small κ, the solutions are of the form

$$
u_{n}(x, t)=e^{-\kappa t / 2}\left[A_{n} \cos \left(\gamma_{n} t\right)+B_{n} \sin \left(\gamma_{n} t\right)\right] \sin \left(\frac{n \pi}{L} x\right)
$$

wher the γ_{n} are constants that you should find the form of. Similarly, show for large κ the solutions are of the form

$$
u_{n}(x, t)=C_{n} e^{-\kappa t / 2} \sin \left(\frac{n \pi}{L} x\right)
$$

and explain what defines large and small.

