3.5 Coordinate transformations

Problem 3.17: Polar Coordinates: Make sure you are familiar with the following expressions for the gradient, divergence, and curl in polar coordinates (r, θ, z) :

$$
\begin{gathered}
\nabla \Phi=\left(\frac{\partial \Phi}{\partial r}, \frac{1}{r} \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial z}\right), \quad \text { for a scalar field } \Phi(r, \theta, z) \\
\nabla \cdot \vec{v}=\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{z}}{\partial z}, \quad \text { for a vector field } \vec{v}=\left(v_{r}, v_{\theta}, v_{z}\right), \\
\nabla \times \vec{v}=\left(\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}-\frac{\partial v_{\theta}}{\partial z}, \quad \frac{\partial v_{r}}{\partial z}-\frac{\partial v_{z}}{\partial r}, \quad \frac{v_{\theta}}{r}+\frac{\partial v_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right)
\end{gathered}
$$

1. Write down the expression for $\nabla^{2} \Phi(r, \theta, z)$ in polar coordinates.
2. Verify by explicit calculation in polar coordinates that

$$
\nabla \cdot(\nabla \times \vec{v})=0
$$

3. Verify by explicit calculation of both sides in polar coordinates that

$$
\nabla \times(\nabla \times \vec{v})=\nabla(\nabla \cdot \vec{v})-\nabla^{2} \vec{v}
$$

4. Calculate the gradient of $\Phi=\sqrt{r^{2}+z^{2}}$, the divergence of $\vec{v}=\left(0,0,1 / \sqrt{r^{2}+z^{2}}\right)$, and the curl of $\vec{u}=(0,2 \pi / r, 0)$.

Problem 3.18: Spherical Coordinates: Make sure you are familiar with the following expressions for the gradient, divergence, and curl in spherical coordinates (r, θ, ϕ) :

$$
\begin{gathered}
\nabla \Phi=\left(\frac{\partial \Phi}{\partial r}, \frac{1}{r} \frac{\partial \Phi}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial \Phi}{\partial \phi}\right), \quad \text { for a scalar field } \Phi(r, \theta, z) \\
\nabla \cdot \vec{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}, \quad \text { for a vector field } \vec{v}=\left(v_{r}, v_{\theta}, v_{\phi}\right), \\
\nabla \times \vec{v}=\left(\frac{1}{r} \frac{\partial v_{\phi}}{\partial \theta}+\frac{\cot \theta}{r} v_{\phi}-\frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi}, \quad \frac{1}{r \sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{v_{\phi}}{r}-\frac{\partial v_{\phi}}{\partial r}, \quad \frac{v_{\theta}}{r}+\frac{\partial v_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right) .
\end{gathered}
$$

1. Write down the expression for $\nabla^{2} \Phi(r, \theta, \phi)$ in spherical coordinates.
2. Verify by explicit calculation in spherical coordinates that

$$
\nabla \cdot(\nabla \times \vec{v})=0
$$

3. Verify by explicit calculation of both sides in spherical coordinates that

$$
\nabla \times(\nabla \times \vec{v})=\nabla(\nabla \cdot \vec{v})-\nabla^{2} \vec{v}
$$

4. Calculate the divergence of $\vec{v}=(\cos \theta / r, \sin \theta / r, 0)$, and the Laplacian of $\sin (k r) / r$.
