4.2 Continuous random variable

- 1. *Characteristic functions:* Calculate the characteristic function, the mean, and the variance of the following probability density functions:
 - (a) Uniform $p(x) = \frac{1}{2a}$ for -a < x < a, and p(x) = 0 otherwise;

(b) Laplace
$$p(x) = \frac{1}{2a} \exp\left(-\frac{|x|}{a}\right)$$

- (c) Cauchy $p(x) = \frac{a}{\pi(x^2+a^2)}$. The following two probability density functions are defined for $x \ge 0$. Compute only the mean and variance for each.
- (d) Rayleigh $p(x) = \frac{x}{a^2} \exp(-\frac{x^2}{2a^2})$,
- (e) Maxwell $p(x) = \sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp(-\frac{x^2}{2a^2})$.
- 2. Diode: The current I across a diode is related to the applied voltage V via $I = I_0 [\exp(eV/kT) 1]$. The diode is subject to a random potential V of zero mean and variance σ^2 which is Gaussian distributed. Find the probability density p(I) for the current I flowing through the diode. Find the most probable value for I, the mean value of I, and indicate them on a sketch of p(I).
- 3. Tchebycheff inequality: Consider any probability density p(x) for $(-\infty < x < \infty)$, with mean λ , and variance σ^2 . Show that the total probability of outcomes that are more than $n\sigma$ away from λ is less than $1/n^2$, i.e.

$$\int_{|x-\lambda| \ge n\sigma} dx p(x) \le \frac{1}{n^2}.$$

Hint: Start with the integral defining σ^2 , and break it up into parts corresponding to $|x - \lambda| > n\sigma$, and $|x - \lambda| < n\sigma$.
