4.3 Many random variables

1. Optimal selection: In many specialized populations, there is little variability among the members. Is this a natural consequence of optimal selection?
(a) Let $\left\{r_{\alpha}\right\}$ be n random numbers, each independently chosen from a probability density $p(r)$, with $r \in[0,1]$. Calculate the probability density $p_{n}(x)$ for the largest value of this set, i.e. for $x=\max \left\{r_{1}, \cdots, r_{n}\right\}$.
(b) If each r_{α} is uniformly distributed between 0 and 1, calculate the mean and variance of x as a function of n, and comment on their behavior at large n.
$* * * * *$
2. Benford's law describes the observed probabilities of the first digit in a great variety of data sets, such as stock prices. Rather counter-intuitively, the digits 1 through 9 occur with probabilities $0.301, .176, .125, .097, .079, .067, .058, .051, .046$ respectively. The key observation is that this distribution is invariant under a change of scale, e.g. if the stock prices were converted from dollars to persian rials! Find a formula that fits the above probabilities on the basis of this observation.
$* * * * *$
3. Directed random walk: The motion of a particle in three dimensions is a series of independent steps of length ℓ. Each step makes an angle θ with the z axis, with a probability density $p(\theta)=2 \cos ^{2}(\theta / 2) / \pi$; while the angle ϕ is uniformly distributed between 0 and 2π. (Note that the solid angle factor of $\sin \theta$ is already included in the definition of $p(\theta)$, which is correctly normalized to unity.) The particle (walker) starts at the origin and makes a large number of steps N.
(a) Calculate the expectation values $\langle z\rangle,\langle x\rangle,\langle y\rangle,\left\langle z^{2}\right\rangle,\left\langle x^{2}\right\rangle$, and $\left\langle y^{2}\right\rangle$, and the covariances $\langle x y\rangle,\langle x z\rangle$, and $\langle y z\rangle$.
(b) Use the central limit theorem to estimate the probability density $p(x, y, z)$ for the particle to end up at the point (x, y, z).
