4.4 From probability to certainty

1. Information: Consider the velocity of a gas particle in one dimension $(-\infty<v<\infty)$.
(a) Find the unbiased probability density $p_{1}(v)$, subject only to the constraint that the average speed is c, i.e. $\langle | v\rangle=c$.
(b) Now find the probability density $p_{2}(v)$, given only the constraint of average kinetic energy, $\left\langle m v^{2} / 2\right\rangle=m c^{2} / 2$.
(c) Which of the above statements provides more information on the velocity? Quantify the difference in information in terms of $I_{2}-I_{1} \equiv\left(\left\langle\ln p_{2}\right\rangle-\left\langle\ln p_{1}\right\rangle\right) / \ln 2$.

$$
* * * * *
$$

2. Dice: A dice is loaded such that 6 occurs twice as often as 1 .
(a) Calculate the unbiased probabilities for the 6 faces of the dice.
(b) What is the information content (in bits) of the above statement regarding the dice?

3. Random matrices: As a model for energy levels of complex nuclei, Wigner considered $N \times N$ symmetric matrices whose elements are random. Let us assume that each element $M_{i j}$ (for $i \geq j$) is an independent random variable taken from the probability density function

$$
p\left(M_{i j}\right)=\frac{1}{2 a} \quad \text { for } \quad-a<M_{i j}<a, \quad \text { and } \quad p\left(M_{i j}\right)=0 \quad \text { otherwise. }
$$

(a) Calculate the characteristic function for each element $M_{i j}$.
(b) Calculate the characteristic function for the trace of the matrix, $T \equiv \operatorname{tr} M=$ $\sum_{i} M_{i i}$.
(c) What does the central limit theorem imply about the probability density function of the trace at large N ?
(d) For large N, each eigenvalue $\lambda_{\alpha}(\alpha=1,2, \cdots, N)$ of the matrix M is distributed according to a probability density function

$$
p(\lambda)=\frac{2}{\pi \lambda_{0}} \sqrt{1-\frac{\lambda^{2}}{\lambda_{0}^{2}}} \quad \text { for } \quad-\lambda_{0}<\lambda<\lambda_{0}, \quad \text { and } \quad p(\lambda)=0 \quad \text { otherwise }
$$

(known as the Wigner semi-circle rule). Find the variance of λ.
(Hint: Changing variables to $\lambda=\lambda_{0} \sin \theta$ simplifies the integrals.)
(e) If in the previous result, we have $\lambda_{0}^{2}=4 N a^{2} / 3$, can the eigenvalues be independent of each other?
4. Mutual information: Consider random variables x and y, distributed according to a joint probability $p(x, y)$. The mutual information between the two variables is defined by

$$
M(x, y) \equiv \sum_{x, y} p(x, y) \ln \left(\frac{p(x, y)}{p_{x}(x) p_{y}(y)}\right)
$$

where p_{x} and p_{y} denote the unconditional probabilities for x and y.
(a) Relate $M(x, y)$ to the entropies $S(x, y), S(x)$, and $S(y)$ obtained from the corresponding probabilities.
(b) Calculate the mutual information for the joint Gaussian form

$$
p(x, y) \propto \exp \left(-\frac{a x^{2}}{2}-\frac{b y^{2}}{2}-c x y\right)
$$

$* * * * *$
5. Semi-flexible polymer in two dimensions Configurations of a model polymer can be described by either a set of vectors $\left\{\mathbf{t}_{i}\right\}$ of length a in two dimensions (for $i=1, \cdots, N$), or alternatively by the angles $\left\{\phi_{i}\right\}$ between successive vectors. The polymer is at a temperature T, and subject to an energy

$$
\mathcal{H}=-\kappa \sum_{i=1}^{N-1} \mathbf{t}_{i} \cdot \mathbf{t}_{i+1}=-\kappa a^{2} \sum_{i=1}^{N-1} \cos \phi_{i}
$$

where κ is related to the bending rigidity, such the probability of any configuration is proportional to $\exp \left(-\mathcal{H} / k_{B} T\right)$.
(a) Show that $\left\langle\mathbf{t}_{m} \cdot \mathbf{t}_{n}\right\rangle \propto \exp (-|n-m| / \xi)$, and obtain an expression for the persistence length $\ell_{p}=a \xi$. (You can leave the answer as the ratio of simple integrals.)
(b) Consider the end-to-end distance \mathbf{R} as illustrated in the figure. Obtain an expression for $\left\langle R^{2}\right\rangle$ in the limit of $N \gg 1$.
(c) Find the probability $p(\mathbf{R})$ in the limit of $N \gg 1$.
(d) If the ends of the polymer are pulled apart by a force \mathbf{F}, the probabilities for polymer configurations are modified by the Boltzmann weight $\exp \left(\frac{\mathbf{F} \cdot \mathbf{R}}{k_{B} T}\right)$. By expanding this weight, or otherwise, show that

$$
\langle\mathbf{R}\rangle=K^{-1} \mathbf{F}+\mathcal{O}\left(F^{3}\right)
$$

and give an expression for the Hookian constant K in terms of quantities calculated before.
6. Jensen's inequality and Kullback-Liebler divergence: A convex function $f(x)$ always lies above the tangent at any point, i.e. $f(x) \geq f(y)+f^{\prime}(y)(x-y)$ for all y.
(a) Show that for a convex function $\langle f(x)\rangle \geq f(\langle x\rangle)$.
(b) The Kullback-Liebler divergence of two probability distributions $p(x)$ and $q(x)$ is defined as $D(p \mid q) \equiv \int d x p(x) \ln [p(x) / q(x)]$. Use Jensen's inequality to prove that $D(p \mid q) \geq 0$.
7. The book of records: Consider a sequence of random numbers $\left\{x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\}$; the entry x_{n} is a record if it is larger than all numbers before it, i.e. if $x_{n}>$ $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$. We can then define an associated sequence of indicators $\left\{R_{1}, R_{2}, \cdots, R_{n}, \cdots\right\}$ in which $R_{n}=1$ if x_{n} is a record, and $R_{n}=0$ if it is not (clearly $R_{1}=1$).
(a) Assume that each entry x_{n} is taken independently from the same probability distribution $p(x)$. [In other words, $\left\{x_{n}\right\}$ are IIDs (independent identically distributed).] Show that, irrespective of the form of $p(x)$, there is a very simple expression for the probability P_{n} that the entry x_{n} is a record.
(b) The records are entered in the Guinness Book of Records. What is the average number $\left\langle S_{N}\right\rangle$ of records after N attempts, and how does it grow for, $N \gg 1$? If the number of trials, e.g. the number of participants in a sporting event, doubles every year, how does the number of entries asymptotically grow with time.
(c) Prove that the record indicators $\left\{R_{n}\right\}$ are independent random variables (though not identical), in that $\left\langle R_{n} R_{m}\right\rangle_{c}=0$ for $m \neq n$.
(d) Compute all moments, and the first three cumulants of the total number of records S_{N} after N entries. Does the central limit theorem apply to S_{N} ?
(e) The first record, of course occurs for $n_{1}=1$. If the third record occurs at trial number $n_{3}=9$, what is the mean value $\left\langle n_{2}\right\rangle$ for the position of the second record? What is the mean value $\left\langle n_{4}\right\rangle$ for the position of the fourth record?

