
4.4 From probability to certainty

1. Information: Consider the velocity of a gas particle in one dimension (−∞ < v <∞).

(a) Find the unbiased probability density p1(v), subject only to the constraint that
the average speed is c, i.e. 〈|v|〉 = c.

(b) Now find the probability density p2(v), given only the constraint of average kinetic
energy, 〈mv2/2〉 = mc2/2.

(c) Which of the above statements provides more information on the velocity? Quan-
tify the difference in information in terms of I2 − I1 ≡ (〈ln p2〉 − 〈ln p1〉) / ln 2.

*****

2. Dice: A dice is loaded such that 6 occurs twice as often as 1.

(a) Calculate the unbiased probabilities for the 6 faces of the dice.

(b) What is the information content (in bits) of the above statement regarding the
dice?

*****

3. Random matrices: As a model for energy levels of complex nuclei, Wigner considered
N × N symmetric matrices whose elements are random. Let us assume that each
element Mij (for i ≥ j) is an independent random variable taken from the probability
density function

p(Mij) =
1

2a
for − a < Mij < a , and p(Mij) = 0 otherwise.

(a) Calculate the characteristic function for each element Mij .

(b) Calculate the characteristic function for the trace of the matrix, T ≡ trM =
∑

iMii.

(c) What does the central limit theorem imply about the probability density function
of the trace at large N?

(d) For large N , each eigenvalue λα (α = 1, 2, · · · , N) of the matrix M is distributed
according to a probability density function

p(λ) =
2

πλ0

√

1− λ2

λ20
for − λ0 < λ < λ0, and p(λ) = 0 otherwise,

(known as the Wigner semi-circle rule). Find the variance of λ.

(Hint: Changing variables to λ = λ0 sin θ simplifies the integrals.)

(e) If in the previous result, we have λ20 = 4Na2/3, can the eigenvalues be independent
of each other?

*****



4. Mutual information: Consider random variables x and y, distributed according to a
joint probability p(x, y). The mutual information between the two variables is defined
by

M(x, y) ≡
∑

x,y

p(x, y) ln

(

p(x, y)

px(x)py(y)

)

,

where px and py denote the unconditional probabilities for x and y.

(a) Relate M(x, y) to the entropies S(x, y), S(x), and S(y) obtained from the corre-
sponding probabilities.

(b) Calculate the mutual information for the joint Gaussian form

p(x, y) ∝ exp

(

−ax
2

2
− by2

2
− cxy

)

.

*****

5. Semi-flexible polymer in two dimensions Configurations of a model polymer can be
described by either a set of vectors {ti} of length a in two dimensions (for i = 1, · · · , N),
or alternatively by the angles {φi} between successive vectors.The polymer is at a
temperature T , and subject to an energy

H = −κ
N−1
∑

i=1

ti · ti+1 = −κa2
N−1
∑

i=1

cosφi ,

where κ is related to the bending rigidity, such the probability of any configuration is
proportional to exp (−H/kBT ).

(a) Show that 〈tm · tn〉 ∝ exp (−|n−m|/ξ), and obtain an expression for the persis-
tence length (p = aξ. (You can leave the answer as the ratio of simple integrals.)

(b) Consider the end–to–end distance R as illustrated in the figure. Obtain an ex-
pression for 〈R2〉 in the limit of N ) 1.

(c) Find the probability p(R) in the limit of N ) 1.

(d) If the ends of the polymer are pulled apart by a force F, the probabilities for

polymer configurations are modified by the Boltzmann weight exp
(

F·R
kBT

)

. By

expanding this weight, or otherwise, show that

〈R〉 = K−1F+O(F 3) ,

and give an expression for the Hookian constant K in terms of quantities calcu-
lated before.

*****



6. Jensen’s inequality and Kullback–Liebler divergence: A convex function f(x) always
lies above the tangent at any point, i.e. f(x) ≥ f(y) + f ′(y)(x− y) for all y.

(a) Show that for a convex function 〈f(x)〉 ≥ f(〈x〉).
(b) The Kullback–Liebler divergence of two probability distributions p(x) and q(x)

is defined as D(p|q) ≡
∫

dx p(x) ln [p(x)/q(x)]. Use Jensen’s inequality to prove
that D(p|q) ≥ 0.

*****

7. The book of records: Consider a sequence of random numbers {x1, x2, · · · , xn, · · · };
the entry xn is a record if it is larger than all numbers before it, i.e. if xn >
{x1, x2, · · · , xn−1}. We can then define an associated sequence of indicators {R1, R2, · · · , Rn, · · · }
in which Rn = 1 if xn is a record, and Rn = 0 if it is not (clearly R1 = 1).

(a) Assume that each entry xn is taken independently from the same probability
distribution p(x). [In other words, {xn} are IIDs (independent identically dis-
tributed).] Show that, irrespective of the form of p(x), there is a very simple
expression for the probability Pn that the entry xn is a record.

(b) The records are entered in the Guinness Book of Records. What is the average
number 〈SN〉 of records after N attempts, and how does it grow for, N ) 1? If
the number of trials, e.g. the number of participants in a sporting event, doubles
every year, how does the number of entries asymptotically grow with time.

(c) Prove that the record indicators {Rn} are independent random variables (though
not identical), in that 〈RnRm〉c = 0 for m *= n.

(d) Compute all moments, and the first three cumulants of the total number of records
SN after N entries. Does the central limit theorem apply to SN?

(e) The first record, of course occurs for n1 = 1. If the third record occurs at trial
number n3 = 9, what is the mean value 〈n2〉 for the position of the second record?
What is the mean value 〈n4〉 for the position of the fourth record?

*****


