
Chapter 4

Probability

4.1 Discrete random variable

1. Random deposition: A mirror is plated by evaporating a gold electrode in vaccum by
passing an electric current. The gold atoms fly off in all directions, and a portion of
them sticks to the glass (or to other gold atoms already on the glass plate). Assume
that each column of deposited atoms is independent of neighboring columns, and that
the average deposition rate is d layers per second.

(a) What is the probability of m atoms deposited at a site after a time t? What
fraction of the glass is not covered by any gold atoms?

(b) What is the variance in the thickness?
*****

4.2 Continuous random variable

1. Characteristic functions: Calculate the characteristic function, the mean, and the vari-
ance of the following probability density functions:

(a) Uniform p(x) = 1
2a for −a < x < a , and p(x) = 0 otherwise;

(b) Laplace p(x) = 1
2a exp

(

− |x|
a

)

;

(c) Cauchy p(x) = a
π(x2+a2) .

The following two probability density functions are defined for x ≥ 0. Compute
only the mean and variance for each.

(d) Rayleigh p(x) = x
a2 exp(−

x2

2a2 ) ,

(e) Maxwell p(x) =
√

2
π
x2

a3 exp(−
x2

2a2 ) .

*****
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2. Diode: The current I across a diode is related to the applied voltage V via I =
I0 [exp(eV/kT )− 1]. The diode is subject to a random potential V of zero mean and
variance σ2 which is Gaussian distributed. Find the probability density p(I) for the
current I flowing through the diode. Find the most probable value for I, the mean
value of I, and indicate them on a sketch of p(I).

*****

3. Tchebycheff inequality: Consider any probability density p(x) for (−∞ < x < ∞),
with mean λ, and variance σ2. Show that the total probability of outcomes that are
more than nσ away from λ is less than 1/n2, i.e.

∫

|x−λ|≥nσ

dxp(x) ≤ 1

n2
.

Hint: Start with the integral defining σ2, and break it up into parts corresponding to
|x− λ| > nσ, and |x− λ| < nσ.

*****

4.3 Many random variables

1. Optimal selection: In many specialized populations, there is little variability among
the members. Is this a natural consequence of optimal selection?

(a) Let {rα} be n random numbers, each independently chosen from a probability
density p(r), with r ∈ [0, 1]. Calculate the probability density pn(x) for the
largest value of this set, i.e. for x = max{r1, · · · , rn}.

(b) If each rα is uniformly distributed between 0 and 1, calculate the mean and
variance of x as a function of n, and comment on their behavior at large n.

*****

2. Benford’s law describes the observed probabilities of the first digit in a great variety of
data sets, such as stock prices. Rather counter-intuitively, the digits 1 through 9 occur
with probabilities 0.301, .176, .125, .097, .079, .067, .058, .051, .046 respectively. The
key observation is that this distribution is invariant under a change of scale, e.g. if the
stock prices were converted from dollars to persian rials! Find a formula that fits the
above probabilities on the basis of this observation.

*****

3. Directed random walk: The motion of a particle in three dimensions is a series of
independent steps of length #. Each step makes an angle θ with the z axis, with a
probability density p(θ) = 2 cos2(θ/2)/π; while the angle φ is uniformly distributed
between 0 and 2π. (Note that the solid angle factor of sin θ is already included in the
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definition of p(θ), which is correctly normalized to unity.) The particle (walker) starts
at the origin and makes a large number of steps N .

(a) Calculate the expectation values 〈z〉, 〈x〉, 〈y〉, 〈z2〉, 〈x2〉, and 〈y2〉, and the co-
variances 〈xy〉, 〈xz〉, and 〈yz〉.

(b) Use the central limit theorem to estimate the probability density p(x, y, z) for the
particle to end up at the point (x, y, z).

*****

4.4 From probability to certainty

1. Information: Consider the velocity of a gas particle in one dimension (−∞ < v <∞).

(a) Find the unbiased probability density p1(v), subject only to the constraint that
the average speed is c, i.e. 〈|v|〉 = c.

(b) Now find the probability density p2(v), given only the constraint of average kinetic
energy, 〈mv2/2〉 = mc2/2.

(c) Which of the above statements provides more information on the velocity? Quan-
tify the difference in information in terms of I2 − I1 ≡ (〈ln p2〉 − 〈ln p1〉) / ln 2.

*****

2. Dice: A dice is loaded such that 6 occurs twice as often as 1.

(a) Calculate the unbiased probabilities for the 6 faces of the dice.

(b) What is the information content (in bits) of the above statement regarding the
dice?

*****

3. Random matrices: As a model for energy levels of complex nuclei, Wigner considered
N × N symmetric matrices whose elements are random. Let us assume that each
element Mij (for i ≥ j) is an independent random variable taken from the probability
density function

p(Mij) =
1

2a
for − a < Mij < a , and p(Mij) = 0 otherwise.

(a) Calculate the characteristic function for each element Mij .

(b) Calculate the characteristic function for the trace of the matrix, T ≡ trM =
∑

iMii.

(c) What does the central limit theorem imply about the probability density function
of the trace at large N?
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(d) For large N , each eigenvalue λα (α = 1, 2, · · · , N) of the matrix M is distributed
according to a probability density function

p(λ) =
2

πλ0

√

1− λ2

λ20
for − λ0 < λ < λ0, and p(λ) = 0 otherwise,

(known as the Wigner semi-circle rule). Find the variance of λ.

(Hint: Changing variables to λ = λ0 sin θ simplifies the integrals.)

(e) If in the previous result, we have λ20 = 4Na2/3, can the eigenvalues be independent
of each other?

*****

4. Mutual information: Consider random variables x and y, distributed according to a
joint probability p(x, y). The mutual information between the two variables is defined
by

M(x, y) ≡
∑

x,y

p(x, y) ln

(

p(x, y)

px(x)py(y)

)

,

where px and py denote the unconditional probabilities for x and y.

(a) Relate M(x, y) to the entropies S(x, y), S(x), and S(y) obtained from the corre-
sponding probabilities.

(b) Calculate the mutual information for the joint Gaussian form

p(x, y) ∝ exp

(

−ax
2

2
− by2

2
− cxy

)

.

*****

5. Semi-flexible polymer in two dimensions Configurations of a model polymer can be
described by either a set of vectors {ti} of length a in two dimensions (for i = 1, · · · , N),
or alternatively by the angles {φi} between successive vectors.The polymer is at a
temperature T , and subject to an energy

H = −κ
N−1
∑

i=1

ti · ti+1 = −κa2
N−1
∑

i=1

cosφi ,

where κ is related to the bending rigidity, such the probability of any configuration is
proportional to exp (−H/kBT ).

(a) Show that 〈tm · tn〉 ∝ exp (−|n−m|/ξ), and obtain an expression for the persis-
tence length #p = aξ. (You can leave the answer as the ratio of simple integrals.)
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(b) Consider the end–to–end distance R as illustrated in the figure. Obtain an ex-
pression for 〈R2〉 in the limit of N + 1.

(c) Find the probability p(R) in the limit of N + 1.

(d) If the ends of the polymer are pulled apart by a force F, the probabilities for

polymer configurations are modified by the Boltzmann weight exp
(

F·R
kBT

)

. By

expanding this weight, or otherwise, show that

〈R〉 = K−1F+O(F 3) ,

and give an expression for the Hookian constant K in terms of quantities calcu-
lated before.

*****

6. Jensen’s inequality and Kullback–Liebler divergence: A convex function f(x) always
lies above the tangent at any point, i.e. f(x) ≥ f(y) + f ′(y)(x− y) for all y.

(a) Show that for a convex function 〈f(x)〉 ≥ f(〈x〉).
(b) The Kullback–Liebler divergence of two probability distributions p(x) and q(x)

is defined as D(p|q) ≡
∫

dx p(x) ln [p(x)/q(x)]. Use Jensen’s inequality to prove
that D(p|q) ≥ 0.

*****

7. The book of records: Consider a sequence of random numbers {x1, x2, · · · , xn, · · · };
the entry xn is a record if it is larger than all numbers before it, i.e. if xn >
{x1, x2, · · · , xn−1}. We can then define an associated sequence of indicators {R1, R2, · · · , Rn, · · · }
in which Rn = 1 if xn is a record, and Rn = 0 if it is not (clearly R1 = 1).

(a) Assume that each entry xn is taken independently from the same probability
distribution p(x). [In other words, {xn} are IIDs (independent identically dis-
tributed).] Show that, irrespective of the form of p(x), there is a very simple
expression for the probability Pn that the entry xn is a record.

(b) The records are entered in the Guinness Book of Records. What is the average
number 〈SN〉 of records after N attempts, and how does it grow for, N + 1? If
the number of trials, e.g. the number of participants in a sporting event, doubles
every year, how does the number of entries asymptotically grow with time.

(c) Prove that the record indicators {Rn} are independent random variables (though
not identical), in that 〈RnRm〉c = 0 for m ,= n.

(d) Compute all moments, and the first three cumulants of the total number of records
SN after N entries. Does the central limit theorem apply to SN?
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(e) The first record, of course occurs for n1 = 1. If the third record occurs at trial
number n3 = 9, what is the mean value 〈n2〉 for the position of the second record?
What is the mean value 〈n4〉 for the position of the fourth record?

*****
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