
Chapter 5

Time dependent probabilities

5.1 Transition rates

1. Point mutations in DNA: Since the four nucleotides in DNA have different chemical
compositions and energetics, they could mutate at different rates. We shall explore
whether, without natural selection at work, such preferential mutation may lead to
different compositions of nucleotides.

(a) Consider a simple model in which all transitions (i.e. mutations between purines A
and G, or between pyramidines T and C) occur with probability q, while transver-
sions (i.e. any mutation from a purine to a pyrimidine or vice versa) occur with
probability p, in each generation. Write down the 4×4 (Markov) transition matrix,
Π1, that relates the frequencies of nucleotides (pA, pG, pT, pC) from one generation
to the next. (Make sure that the normalization condition pA + pG + pT + pC = 1
is preserved.)

(b) Find the eigenvalues of the transition matrix Π1. (Hint: You should be able to
simply guess the eigenvectors by considering the symmetries of the matrix.)
item Find the matrix Πt = Πt

1, describing the evolution of probabilities after t
generations.

(c) Show that in steady state (after many duplications), all nucleotides occur with
the same frequency. Estimate the number of generations (as a function of p and
q) needed to reach such a steady state.

(d) You should be able to convince yourself that for any model in which mutation
rates between pairs of bases are the same in the forward and backward directions,
all nucleotides are equally likely in the steady state. However, in the human
genome the nucleotides C and G occur less often than A and T. This is partly
due to methylation of successive CG pairs which makes them more susceptible
to mutations. To mimic this asymmetry, consider an unrealistic model in which
transversions from A to C and T to G occur with probability p+, while the reverse
transversions (from C to A or G to T) occur at a lower probability of p−. (The
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other transversions occur at rate p, and transitions at rate q as before.) Write the
modified transfer matrix corresponding to this model, and obtain the resulting
frequencies of nucleotides in steady state.

*****

2. Activation/deactivation reaction: Many molecules in biology can be made active or
inactive through the addition of a phosphate group. The enzyme that adds the phos-
phate group is usually termed a kinase, while a phosphatase removes this group. Let
us consider a case where a finite number N of such molecules within a cell can be
exchanged between the two forms at rates a and b, i.e.

A !
a
b B ,

where we have folded the probabilities to encounter the enzymes in the reaction rates.

(a) Write down the Master equation that governs the evolution of the probabilities
p(NA = n,NB = N − n, t).

(b) Assuming that initially all molecules are in state A, i.e. p(n, t = 0) = δn,N , find
p(n, t) at all times. You may find it easier to guess the solution, but should then
check that it satisfies the equations obtained before.

*****

5.2 Continuum limit

1. The Moran process, named after Patrick Moran, is a simple method for modeling
a population of constant size. At each step one individual from the population is
randomly selected for duplication/reproduction, and another for elimination/death,
thus maintaining a fixed size.

(a) For a haploid population of size N , with one locus and two alleles A1 and A2,
compute the changes 〈∆N1〉 and 〈∆N2

1 〉 in number of individuals with allele N1

after one step.

(b) Construct the drift-diffusion equation for this model, assuming that N/2 steps of
the Moran process correspond to one generation time.

(c) How would you modify the process to implement differing fitness values for the
two alleles?

*****

2. Treadmilling Actin: Actin filaments are long, asymmetric, polymers involved in a va-
riety of cellular functions. In some cases the filaments are in a dynamic state in which
monomers are removed from one end and added to the other. (The two ends are called
minus and plus respectively, and this process is known as treadmilling.)
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(a) Assume that monomers are added to the plus-end at rate a, and removed from
the minus end at rate b. Write down the equations governing the rate of change
of the probabilities {p(", t)}, for finding a filament of length " at time t. Note that
" = 1, 2, , 3, · · · , and that the equation of p(1, t) is different from the rest.

(b) It is possible to have a dynamic steady state with probabilities p∗(") that do not
change with time. Find the (properly normalized) distribution p∗(") in such a
case.

(c) What is the condition for the existence of a time independent steady state, and
the mean length of the filament in such a case?

(d) For a > b, what is the average length of a filament at time t, starting from
individual monomers at time t = 0? Calculate the fluctuations (variance) in
length, and write down an approximate probability distribution p(", t) with the
correct first and second moment.

*****

3. Activation/deactivation reaction: Many molecules in biology can be made active or
inactive through the addition of a phosphate group. The enzyme that adds the phos-
phate group is usually termed a kinase, while a phosphatase removes this group. Let
us consider a case where a finite number N of such molecules within a cell can be
exchanged between the two forms at rates a and b, i.e.

A !
a
b B ,

where we have folded the probabilities to encounter the enzymes in the reaction rates.

(a) Write down the Master equation that governs the evolution of the probabilities
p(NA = n,NB = N − n, t).

(b) Assuming that initially all molecules are in state A, i.e. p(n, t = 0) = δn,N , find
p(n, t) at all times. You may find it easier to guess the solution, but should then
check that it satisfies the equations obtained before.

*****

5.3 Brownian motion

1. Foraging: Typical foraging behavior consists of a random search for food, followed by
a quick return to the nest. For this problem, assume that the nest is at the origin, and
the search consists of a random walk in two dimensions around the nest.

(a) Modeling the search as a random walk with diffusion constant D, what is the
probability density for the searcher to be a distance r from the nest, at a time t
after leaving the nest?
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(b) Assume that durations of search segments are exponentially distributed, i.e. with
probability p(t) ∝ e−t/τ . Further assume that the times spent in returning to the
nest, and stay at nest between searches, are negligible compared to search times.
After times much longer than τ , what is the probability to find the searcher at
a distance r from the nest. Use saddle-point integration to find the asymptotic
probability for large r.

*****

2. Chemotaxis: The motion of E. Coli in a solution of nutrients consists of an alternating
sequence of runs and tumbles. During a run the bacterium proceeds along a straight
line for a time tr with a velocity v. It then tumbles for a time tt, after which it randomly
chooses a new direction n̂ to run along. Let us assume that the times tr and tt are
independently selected from probability distributions

pr (tr) =
4tr
τ 2r

exp

(

−2tr
τr

)

, and pt (tt) =
4tt
τ 2t

exp

(

−2tt
τt

)

.

(a) Assuming values of τr ≈ 2s, τt ≈ 0.2s, and v ≈ 30µms−1, calculate the diffusion
coefficient D for the bacterium at long times.

(b) In the presence of a chemical gradient the run times become orientation depen-
dent, and are longer when moving in a favorable direction. For preferred motion
up the z axis, let us assume that the average run time depends on its orientation
n̂ according to τr (n̂) = τ0 + gn̂ · ẑ. Calculate the average drift velocity at long
times.

*****
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