
1.1.3 Instantaneous reaction =⇒ Simple differential equations

We noted that displacing a particle from its equilibrium position leads to a response, quanti-
fied by the force F (x). The force in turn causes variations of the coordinate in time as x(t),
captured by the Taylor series introduced at the beginning. The leading terms in this series
are the velocity x1 = v = dx/dt ≡ ẋ and the acceleration x2 = a = d2x/dt2 ≡ ẍ. Assuming
that the evolution of the coordinate x at each time is constrained by a relation between
these time derivatives and the instananeous force, naturally leads to differential equations.
While the laws of physics encode these variations through Newton’s equation of motion, it
is instructive to follow an agnostic perspective.

(1) The simplest assumption we can make is that the velocity of the particle at each
time is proportional to the force at that time, i.e. F (at time t) = F (x at time t) = F (x(t)),
leading to the ordinary differential equation (ODE)

ẋ = µF (x). (1.1.10)

This is actually a very good description for a particle moving in a viscous fluid like oil, and
µ in the above equation is known as the mobility. Let us further assume that at t = 0, the
particle is displaced by a small amount to x0. To find its position x(t) as a function of time,
we need to solve the first order differential equation1

ẋ ≈ −µKx ≡ −γx. (1.1.11)

The force has been linearized, and we have introduced the parameter γ with dimensions of
inverse time.

1The order of a differential equation is defined by the highest derivative term appearing in the equation,
e.g. if dnx/dtn is the highest derivative, the ODE is of nth order.


