1.1.4 The exponential solution

To find the particle position $x(t)$ we now need to solve the linear differential equation $\dot{x}=$ $-\gamma x$. One way of doing this is to develop a Taylor series for $x(t)$ around $t=0$, whose coefficients are derivatives evaluated at $t=0$. The differential equation allows us to calculate these derivatives easily, giving in particular

$$
\begin{equation*}
\frac{d x}{d t}(t=0)=-\gamma x(0)=-\gamma x_{0} . \tag{1.1.12}
\end{equation*}
$$

Higher derivatives can be successively related to lower derivatives by taking derivatives of the differential equation, as

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}(0)=-\gamma \frac{d x}{d t}(0)=+\gamma^{2} x_{0} \tag{1.1.13}
\end{equation*}
$$

and the general term is

$$
\begin{equation*}
\frac{d^{n} x}{d t^{n}}(0)=-\gamma \frac{d^{n-1} x}{d t^{n-1}}(0)=(-\gamma)^{n} x_{0} \tag{1.1.14}
\end{equation*}
$$

The solution can thus be obtained from the series

$$
\begin{equation*}
x(t)=x_{0}-\gamma x_{0} t+\frac{\gamma^{2}}{2!} x_{0} t^{2}+\cdots=x_{0} \sum_{n=0}^{\infty} \frac{(-\gamma t)^{n}}{n!}=x_{0} e^{-\gamma t} . \tag{1.1.15}
\end{equation*}
$$

For the final step, we have employed the series expansion for the exponential function.

- The exponential function has the nice property of keeping its form under differentiation. It thus appears quite generally as a solution to all linear differential equations.

