
1.1.4 The exponential solution

To find the particle position x(t) we now need to solve the linear differential equation ẋ =
−γx. One way of doing this is to develop a Taylor series for x(t) around t = 0, whose
coefficients are derivatives evaluated at t = 0. The differential equation allows us to calculate
these derivatives easily, giving in particular

dx

dt
(t = 0) = −γx(0) = −γx0. (1.1.12)

Higher derivatives can be successively related to lower derivatives by taking derivatives of
the differential equation, as
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and the general term is
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The solution can thus be obtained from the series
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For the final step, we have employed the series expansion for the exponential function.
• The exponential function has the nice property of keeping its form under differentiation.

It thus appears quite generally as a solution to all linear differential equations.


