1.1.6 The Energy Function

For future reference we make the following observations:
(1) Any first order differential equation of the form & = pF'(x) can be cast as
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As its argument changes with time, so does the potential V(x(¢)), and its variations are
obtained using the chain rule of differentiation as
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For p > 0, the value of potential can only decrease with time, and Eq. (1.1.22) describes
gradient descent in the potential V(z). The coordinate = proceeds towards a stationary
(equilibrium) state corresponding to closest minimum of the potential V' (z). (The stationary
point at a local maximum of V(x) is referred to as an unstable equilibrium point.)

(2) For any second order differential equation of the form m# = F(z) = —dV (z)/dz, we
can define a first integral by multiplying both sides of the equation with &, and rearranging
as
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This immediately implies that the quantity
j;2
E(t) =m— + V(z) = Ey, (1.1.25)
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is a constant of motion that does not change over time. In the context of a particle,
corresponds to the sum of a kinetic energy mi?/2, and a potential energy V(x). For small
distortions around an equilibrium position (z = & = 0), the energy can then be expanded as
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Conservation of energy then leads to
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Setting the term in the brackets to zero reproduces the equation of motion, in this case again
describing SHOs with wy = /K/M.



