
1.1.6 The Energy Function

For future reference we make the following observations:
(1) Any first order differential equation of the form ẋ = µF (x) can be cast as

ẋ = −µ
dV (x)

dx
, with V (x) = −

∫ x

dx′F (x′). (1.1.22)

As its argument changes with time, so does the potential V (x(t)), and its variations are
obtained using the chain rule of differentiation as

dV

dt
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·
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)2

≤ 0. (1.1.23)

For µ > 0, the value of potential can only decrease with time, and Eq. (1.1.22) describes
gradient descent in the potential V (x). The coordinate x proceeds towards a stationary
(equilibrium) state corresponding to closest minimum of the potential V (x). (The stationary
point at a local maximum of V (x) is referred to as an unstable equilibrium point.)

(2) For any second order differential equation of the form mẍ = F (x) = −dV (x)/dx, we
can define a first integral by multiplying both sides of the equation with ẋ, and rearranging
as

0 = mẋẍ+ ẋ
dV (x)

dx
=

d

dt

[

m
ẋ2

2
+ V (x)

]

≡
dE

dt
. (1.1.24)

This immediately implies that the quantity

E(t) = m
ẋ2

2
+ V (x) = E0, (1.1.25)

is a constant of motion that does not change over time. In the context of a particle, E
corresponds to the sum of a kinetic energy mẋ2/2, and a potential energy V (x). For small
distortions around an equilibrium position (x = ẋ = 0), the energy can then be expanded as

E(t) =
m

2
ẋ2 +

K

2
x2 + higher order terms = E0 . (1.1.26)

Conservation of energy then leads to

0 =
dE

dt
≈ Mẋẍ+Kxẋ = ẋ (Mẍ+Kx) . (1.1.27)

Setting the term in the brackets to zero reproduces the equation of motion, in this case again
describing SHOs with ω0 =

√

K/M .


