
Chapter 1

One variable

1.1 Taylor Expansions

1.1.1 Variable =⇒ Function

The position of a moving particle is an example of a variable that proceeds continuously
from one point in space to another, from one moment in time to the next. Mathematically,
functions that describe such quantities are analytic, and can be expanded as a Taylor series.
For example, the function x(t) quantifying variations in location of a particle in time can be
written as

x(t) = x0 + x1t+
x2

2!
t2 +

x3

3!
t3 + · · · ≡

∞
∑

n=0

xn

n!
tn. (1.1.1)

The set of coefficients {xn} in the expansion can be obtained by taking successive derivatives
of the function. Recalling that dtp

dt = ptp−1, we obtain

dx(t)

dt
= x1 + x2t+

x3
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t2 +

x3

3!
t3 + · · · ≡

∞
∑
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n!
tn, =⇒

dx(t)

dt
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∣

∣

∣

t=0

= x1. (1.1.2)

Taking more derivatives removes further terms from the start of the series, such that

dpx(t)

dtp
= xp + xp+1t+

xp+2

2!
t2 +

x3

3!
t3 + · · · ≡

∞
∑

n=0

xn+p

n!
tn, (1.1.3)

leading to

xn =
dnx

dtn

∣

∣

∣

∣

t=0

. (1.1.4)

The above represents that Taylor expansion around t = 0. Naturally, we can also expand
around any other point t = t0, as

x(t) = x̃0 + x̃1(t− t0) +
x̃2

2!
(t− t0)

2 +
x̃3

3!
(t− t0)

3 + · · · ≡
∞
∑

n=0

x̃n

n!
(t− t0)

n, (1.1.5)
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with

x̃n =
dnx

dtn

∣

∣

∣

∣

t=t0

. (1.1.6)

For the time being we shall not deal with non-analytic functions where such an expansion is
not possible.

1.1.2 Small displacements =⇒ Linear response

Surprisingly, we can usually get quite far by approximating a Taylor expansion with its first
terms. Of course, the trick is to do this for the right quantity in the appropriate limit, as
we shall see shortly. An important example of this in mechanics is the famous Hooke’s law
which states that the force F is proportional (and opposed) to the displacement. Imagine
pushing a spring, or any other elastic body, by a displacement x away from its equilibrium
state. The spring responds by exerting a force F (x), which can be represented by the Taylor
series

F (x) = f0 + f1x+
f2
2!
x2 + · · · ≈ −Kx, (1.1.7)

where we have used common sense to decide that the first coefficient f0 is zero (at equi-
librium), and the second is negative (K = −f1 > 0). Naturally higher order terms are
present in any material, and will invalidate the Hookian approximation when the displace-
ment exceeds say x∗ ≈ f1/f2. As long as the contribution from higher order terms in the
series is small, which will always be the case for small enough displacements, we can use
this approximation. A linear response to perturbations is quite frequently used in physics as
it is amenable to analytic computations that usually provide much insight. It is, however,
important to be aware of the limits to validity of linearized models; the non-linear regime is
harder to handle, and could lead to very different behaviors (e.g when a spring breaks).

In mechanical systems, we can relate the force to the derivative of another function, the
potential energy V (x) by

F (x) = −
dV (x)

dx
. (1.1.8)

Note that if we construct a Taylor series for the potential energy corresponding to displace-
ments around an equilibrium point, we get

V (x) = V0 +
K

2
x2 + higher order terms . (1.1.9)

Quite generally, expansions around an equilibrium position, corresponding to zero force,
start with a quadratic term. Ignoring higher order terms leads to a quadratic or harmonic
potential. The ideal Hookian spring thus has a linear force law, and a harmonic potential
energy.
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1.1.3 Instantaneous reaction =⇒ Simple differential equations

We noted that displacing a particle from its equilibrium position leads to a response, quanti-
fied by the force F (x). The force in turn causes variations of the coordinate in time as x(t),
captured by the Taylor series introduced at the beginning. The leading terms in this series
are the velocity x1 = v = dx/dt ≡ ẋ and the acceleration x2 = a = d2x/dt2 ≡ ẍ. Assuming
that the evolution of the coordinate x at each time is constrained by a relation between
these time derivatives and the instananeous force, naturally leads to differential equations.
While the laws of physics encode these variations through Newton’s equation of motion, it
is instructive to follow an agnostic perspective.

The simplest assumption we can make is that the velocity of the particle at each time is
proportional to the force at that time, i.e. F (at time t) = F (x at time t) = F (x(t)), leading
to the ordinary differential equation (ODE)

ẋ = µF (x). (1.1.10)

This is actually a very good description for a particle moving in a viscous fluid like oil, and
µ in the above equation is known as the mobility. Let us further assume that at t = 0, the
particle is displaced by a small amount to x0. To find its position x(t) as a function of time,
we need to solve the first order differential equation1

ẋ ≈ −µKx ≡ −γx. (1.1.11)

The force has been linearized, and we have introduced the parameter γ with dimensions of
inverse time.

1.1.4 The exponential solution

To find the particle position x(t) we now need to solve the linear differential equation ẋ =
−γx. One way of doing this is to develop a Taylor series for x(t) around t = 0, whose
coefficients are derivatives evaluated at t = 0. The differential equation allows us to calculate
these derivatives easily, giving in particular

dx

dt
(t = 0) = −γx(0) = −γx0. (1.1.12)

Higher derivatives can be successively related to lower derivatives by taking derivatives of
the differential equation, as

d2x

dt2
(0) = −γ

dx

dt
(0) = +γ2x0, (1.1.13)

and the general term is
dnx

dtn
(0) = −γ

dn−1x

dtn−1
(0) = (−γ)nx0. (1.1.14)

1The order of a differential equation is defined by the highest derivative term appearing in the equation,
e.g. if dnx/dtn is the highest derivative, the ODE is of nth order.
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The solution can thus be obtained from the series

x(t) = x0 − γx0t +
γ2

2!
x0t

2 + · · · = x0

∞
∑

n=0

(−γt)n

n!
= x0e

−γt. (1.1.15)

For the final step, we have employed the series expansion for the exponential function.
• The exponential function has the nice property of keeping its form under differentiation.

It thus appears quite generally as a solution to all linear differential equations.

1.1.5 Time reversal symmetry

The above solution describes a displacement that decays to zero over a characteristic time
τ = 1/γ. While this may be an acceptable solution to a creature living in viscous oil, a being
in free space notices that things typically do not come to rest, but will instead oscillate
around their equilibrium position for long times. We then make the crucial observation that
an oscillation looks the same going forward or backward in time. If the laws of nature have
such time reversal symmetry then we should use an equation of motion that respects this,
and does not change under t → −t. Since the velocity changes sign under this transfor-
mation, the earlier proposed Eq. (??) does not describe such a situation. Insisting on time
reversal symmetry as a property of nature then leads to Newton’s law of motion in which
the acceleration, a = d2x/dt2 ≡ ẍ (which is invariant under t → −t) is proportional to force,
i.e.

mẍ = F (x) , (1.1.16)

where m is the mass. In the linear regime F (x) ≈ −Kx, with K as the Hookian coefficient,
we thus arrive to the second order differential equation

ẍ = −ω2
0x , (1.1.17)

where ω0 =
√

K/m has dimensions of inverse time. This equation describes Simple Harmonic
Oscillations (SHOs) as shown next.

We can obtain the solution to this equation by the same series method as before. However,
while even derivatives at t = 0 can be obtained from the initial displacement x0, the odd
derivatives are related to the initial velocity v0. The complete solution is thus

x(t) = x0 + v0t−
ω2
0

2!
x0t

2 −
ω2
0

3!
v0t

3 + · · ·

= x0

[

1−
(ω0t)2

2!
+

(ω0t)4

4!
+ · · ·

]

+
v0
ω0

[

(ω0t)−
(ω0t)3

3!
+ · · ·

]

= x0 cos (ω0t) +
v0
ω0

sin (ω0t) . (1.1.18)

For the final step we have assumed familiarity with the series expansions for sine and cosine
functions. The solution in this case is a periodic function, i.e. it represents oscillations
around the origin. The function repeats with a period of

T =
2π

ω0
= ν−1, (1.1.19)
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where the frequency ν has units of Hertz (inverse second). The parameter ω0 is the angular
frequency and has units of radians per second.

• Note that a solution to the second order differential equation depends on two initial
conditions, x0 and v0. From the series approach you can see that for nth order differential
equations, one needs to specify n initial conditions.

& Pendulum: A mass m at the end of a string of length ' is disturbed from equilibrium.
Let us denote θ the angle from the vertical. The tangential acceleration is 'θ̈, while the
tangential component of the restoring force due to gravity is mg sin θ. From Newton’s law
we have

m'θ̈ = −mg sin θ ≈ −mgθ, (1.1.20)

where the last step comes from linearizing the force. This can be cast in the standard form
θ̈ = −ω2

0θ for SHO, with angular frequency ω0 =
√

g/'. Note that the angular frequency is
independent of mass (or shape) of the object. This is a physical principle that could not be
guessed from mathematics alone, and thus points to existence of yet another symmetry of
nature.

(3) A more general equation describing the motion of particle in a fluid includes both
inertial and friction terms, taking the form

F (x) = mẍ+
1

µ
ẋ+ · · · . (1.1.21)

While the Newtonian term, mẍ is time reversal symmetric, inclusion of friction via ẋ/µ
removes this symmetry. A linear response around equilibrium then leads to damped oscilla-
tions that will be quantified later. Note, however, that in the spirit of a series expansion we
can in principle add to the right hand side higher order derivatives, such as d3x/dt3, as well
as nonlinear terms such as ẍẋ2. Indeed the former appears as a form of quantum friction
in vacuum, while near relativistic speeds allow for the latter; the latter being negligible at
ordinary settings dealing with velocities much smaller than the speed of light. The lesson
is that even commonly occurring equations of motion may be regarded as expressions of
low order terms in a series expansion, and thus as mathematical constructs that transcend
particular physics applications.

1.1.6 The Energy Function

For future reference we make the following observations:
(1) Any first order differential equation of the form ẋ = µF (x) can be cast as

ẋ = −µ
dV (x)

dx
, with V (x) = −

∫ x

dx′F (x′). (1.1.22)

As its argument changes with time, so does the potential V (x(t)), and its variations are
obtained using the chain rule of differentiation as

dV

dt
=

dV

dx
·
dx

dt
= −µ

(

dV

dx

)2

≤ 0. (1.1.23)

7



For µ > 0, the value of potential can only decrease with time, and Eq. (??) describes gradient
descent in the potential V (x). The coordinate x proceeds towards a stationary (equilibrium)
state corresponding to closest minimum of the potential V (x). (The stationary point at a
local maximum of V (x) is referred to as an unstable equilibrium point.)

(2) For any second order differential equation of the form mẍ = F (x) = −dV (x)/dx, we
can define a first integral by multiplying both sides of the equation with ẋ, and rearranging
as

0 = mẋẍ+ ẋ
dV (x)

dx
=

d

dt

[

m
ẋ2

2
+ V (x)

]

≡
dE

dt
. (1.1.24)

This immediately implies that the quantity

E(t) = m
ẋ2

2
+ V (x) = E0, (1.1.25)

is a constant of motion that does not change over time. In the context of a particle, E
corresponds to the sum of a kinetic energy mẋ2/2, and a potential energy V (x). For small
distortions around an equilibrium position (x = ẋ = 0), the energy can then be expanded as

E(t) =
m

2
ẋ2 +

K

2
x2 + higher order terms = E0 . (1.1.26)

Conservation of energy then leads to

0 =
dE

dt
≈ Mẋẍ+Kxẋ = ẋ (Mẍ+Kx) . (1.1.27)

Setting the term in the brackets to zero reproduces the equation of motion, in this case again
describing SHOs with ω0 =

√

K/M .

Recap
We encountered the following linear differential equations:

• (i) First order (simple damping):

ẋ = −γx, ⇒ x(t) = x0e
−γt. (1.1.28)

• (ii) Second order (SHO):

ẍ = −ω2
0x, ⇒ x(t) = x0 cos (ω0t) +

v0
ω0

sin (ω0t) . (1.1.29)

Note that the above second equation has two classes of solutions: (a) x0 cos(ω0t), corre-
sponding to an initial displacement x0 with zero velocity at t = 0; and (b) v0 sin(ω0t)/ω0,
which describes starting the particle from the origin, with velocity v0 at t = 0. The general
solution is simply the sum of the two cases, i.e. if we want to find the displacement of a
particle launched at x0 with velocity v0, we simply need to add the solutions in (a), and (b).
This is a simple example of the very important superposition principle which is an important
property of linear systems that will be discussed later.
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