3.2.3 Superposition of normal modes

The normal modes provide specific, and particularly simple solutions to the PDE. Since we are dealing with a linear PDE, other solutions can be obtained by superposing normal modes. In fact, the full set of normal modes provides a complete basis for the space of functions on the given domain, such that any solution to the linear PDE, with appropriate boundary conditions, can be decomposed into a superposition of normal modes.

To illustrate this, let us consider the wave equation, with dispersion relation $\omega=v k$, in case of a string that is fixed at both ends. Any solution of the wave-equation must thus satisfy $u(0, t)=u(L, t)=0$, and can be expressed by a sum of normal modes as

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} \mathcal{A}_{n} \sin \left(k_{n} x\right) \sin \left(\omega_{n} t+\theta_{n}\right) \equiv \sum_{n=1}^{\infty} \sin \left(k_{n} x\right)\left[A_{n} \sin \left(\omega_{n} t\right)+B_{n} \cos \left(\omega_{n} t\right)\right] \tag{3.2.18}
\end{equation*}
$$

where $k_{n}=n \pi / L$ for integer n, and $\omega_{n}=v k_{n}$. We have also indicated two equivalent forms for the time variations of the normal modes that are sometimes useful.

The coefficients $\left\{\mathcal{A}_{n}, \theta_{n}\right\}$ or $\left\{A_{n}, B_{n}\right\}$ can for example be fixed by giving the initial conditions $u(x, t=0)$ and $\dot{u}(x, t=0)$. The velocity of the string is obtained as

$$
\begin{align*}
\dot{u}(x, t) & =\sum_{n=1}^{\infty} \mathcal{A}_{n} \omega_{n} \sin \left(k_{n} x\right) \cos \left(\omega_{n} t+\theta_{n}\right) \\
& \equiv \sum_{n=1}^{\infty} \sin \left(k_{n} x\right)\left[\omega_{n} A_{n} \cos \left(\omega_{n} t\right)-\omega_{n} B_{n} \sin \left(\omega_{n} t\right)\right] \tag{3.2.19}
\end{align*}
$$

and hence the initial conditions can be written as

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \text { and } \quad \dot{u}(x, 0)=\sum_{n=1}^{\infty} \omega_{n} A_{n} \sin \left(\frac{n \pi x}{L}\right) . \tag{3.2.20}
\end{equation*}
$$

The coefficients $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ can now be obtained from $\dot{u}(x, 0)$ and $u(x, 0)$ respectively, using the following result ${ }^{2}$

$$
\int_{0}^{L} d x \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right)=\left\{\begin{align*}
0 & \text { for } n \neq m \tag{3.2.21}\\
L / 2 & \text { for } n=m
\end{align*}\right\} \equiv \frac{L}{2} \delta_{n m}
$$

Multiplying each side of the series for initial conditions in Eq. (3.2.20) by $\sin \left(\frac{m \pi x}{L}\right)$, and integrating over x, we obtain

$$
\left\{\begin{array}{l}
\int_{0}^{L} d x \sin \left(\frac{m \pi x}{L}\right) u(x, 0)=\frac{L}{2} B_{m} \tag{3.2.22}\\
\int_{0}^{L} d x \sin \left(\frac{m \pi x}{L}\right) \dot{u}(x, 0)=\frac{L}{2} \omega_{m} A_{m}
\end{array}, \Rightarrow\left\{\begin{array}{l}
B_{m}=\frac{2}{L} \int_{0}^{L} d x \sin \left(\frac{m \pi x}{L}\right) u(x, 0) \\
A_{m}=\frac{2}{\omega_{m} L} \int_{0}^{L} d x \sin \left(\frac{m \pi x}{L}\right) \dot{u}(x, 0)
\end{array}\right.\right.
$$

[^0]
[^0]: ${ }^{2}$ This is usually referred to as an orthogonality condition for the normal mode basis.

