Recap

- Separable solutions to linear PDEs of the form

$$
\begin{equation*}
\eta \dot{u}+\rho \ddot{u}=-J u+K u^{\prime \prime}, \tag{3.2.30}
\end{equation*}
$$

are closely related to normal modes of the Laplacian operator, and can take the form

$$
\begin{equation*}
u(x, t) \propto e^{i \omega(k) t} \sin (k x+\theta) \tag{3.2.31}
\end{equation*}
$$

with $\omega(k)$ given by the dispersion relation, as solution to

$$
\begin{equation*}
i \omega \eta-\omega^{2} \rho+J u=-K k^{2} . \tag{3.2.32}
\end{equation*}
$$

- In a finite system, the allowed values of k are determined by boundary conditions. For example, with closed boundary conditions $u(0, t)=u(L, t)=0, k_{n}=n \pi / L$ for $n=1,2,3, \cdots$.

