3.3 Fourier analysis

3.3.1 Fourier Series

The procedure for decomposing the initial condition as a sum of terms proportional to $\sin (n \pi x / L)$ is an example of Fourier transformation. In fact, one can similarly obtain Fourier series for any function defined on any interval. The choice of boundary conditions is part of indicating the interval under consideration. Let us consider periodic boundary conditions, also describing functions $f(x)=f(x+L)$ that repeat cyclically upon translation by L. Such functions can be constructed by superposition of sine and cosine functions of the same period, as

$$
\begin{equation*}
f(x)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\frac{2 \pi n x}{L}\right)+B_{n} \sin \left(\frac{2 \pi n x}{L}\right)\right] . \tag{3.3.1}
\end{equation*}
$$

The sine and cosine functions are orthogonal in the interval, in the sense that they obey the relations

$$
\left\{\begin{array}{l}
\int_{0}^{L} d x \cos \left(\frac{2 \pi m x}{L}\right) \cos \left(\frac{2 \pi n x}{L}\right)=\frac{L}{2} \delta_{m n} \tag{3.3.2}\\
\int_{0}^{L} d x \sin \left(\frac{2 \pi m x}{L}\right) \sin \left(\frac{2 \pi n x}{L}\right)=\frac{L}{2} \delta_{m n} \\
\int_{0}^{L} d x \sin \left(\frac{2 \pi m x}{L}\right) \cos \left(\frac{2 \pi n x}{L}\right)=0
\end{array}\right.
$$

as

$$
\left\{\begin{array}{l}
A_{0}=\frac{1}{L} \int_{0}^{L} d x f(x) \tag{3.3.3}\\
A_{n}=\frac{2}{L} \int_{0}^{L} d x f(x) \cos \left(\frac{2 \pi n x}{L}\right) . \\
B_{n}=\frac{2}{L} \int_{0}^{L} d x f(x) \sin \left(\frac{2 \pi n x}{L}\right)
\end{array}\right.
$$

Another perspective is to scale the interval from $x \in[0,2 \pi]$ to an angle $\theta=2 \pi x / L \in$ $[0,2 \pi]$.The appropriate normal modes (basis functions) for such periodicity are $\cos (n \theta)$ for $n=0,1,2, \cdots$, and $\sin (n \theta)$ for $n=1,2, \cdots$. We can then write for any periodic function

$$
\begin{equation*}
f(\theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right] \tag{3.3.4}
\end{equation*}
$$

The coefficients in the expansion can be obtained using the following orthogonality relations

$$
\left\{\begin{array}{l}
\int_{0}^{2 \pi} d \theta \cos (m \theta) \cos (n \theta)=\pi \delta_{m n} \tag{3.3.5}\\
\int_{0}^{2 \pi} d \theta \sin (m \theta) \sin (n \theta)=\pi \delta_{m n} \\
\int_{0}^{2 \pi} d \theta \sin (m \theta) \cos (n \theta)=0
\end{array}\right.
$$

as

$$
\left\{\begin{array}{l}
A_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} d \theta f(\theta) \tag{3.3.6}\\
A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} d \theta f(\theta) \cos (n \theta) \\
B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} d \theta f(\theta) \sin (n \theta)
\end{array}\right.
$$

As a first example, consider a "square wave," i.e. a function

$$
f_{1}(\theta)=\left\{\begin{array}{rl}
1 & \text { for } 0<\theta<\pi \tag{3.3.7}\\
-1 & \text { for } \pi<\theta<2 \pi
\end{array} .\right.
$$

The coefficients of the Fourier series are

$$
\begin{equation*}
A_{n}=\frac{1}{\pi}\left[\int_{0}^{\pi} d \theta \cos (n \theta)-\int_{\pi}^{2 \pi} d \theta \cos (n \theta)\right]=0 \tag{3.3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}=\frac{1}{\pi}\left[\int_{0}^{\pi} d \theta \sin (n \theta)-\int_{\pi}^{2 \pi} d \theta \sin (n \theta)\right]=\frac{2}{n \pi}[1-\cos (n \pi)] \tag{3.3.9}
\end{equation*}
$$

Hence we can construct a square wave from

$$
\begin{equation*}
f_{1}(\theta)=\frac{4}{\pi}\left[\sin (\theta)+\frac{\sin (3 \theta)}{3}+\frac{\sin (5 \theta)}{5}+\cdots\right] . \tag{3.3.10}
\end{equation*}
$$

The square wave is certainly not continuous at the boundaries of the interval $[0,2 \pi]$, but the Fourier decomposition still works. Note that using periodicity of $2 \pi, f_{1}(-\theta)=-f_{1}(\theta)$ is an odd function of angle, and hence only the sine terms contribute to the Fourier series.

The procedure can be extended to any interval $x \in[a, b]$. As a second example, consider

$$
\begin{equation*}
f_{2}(x)=x, \quad \text { for }-L / 2<x<+L / 2 \tag{3.3.11}
\end{equation*}
$$

The appropriate functions for this interval are $\cos (2 n \pi x / L)$ and $\sin (2 n \pi x / L)$. Since the function $f_{2}(x)$ is odd, i.e. $f_{2}(-x)=-f_{2}(x)$, all the coefficients of the even functions, $\cos (2 n \pi x / L)$,
are zero. The coefficient of $\sin (2 n \pi x / L)$ is given by

$$
\begin{align*}
B_{n} & =\frac{2}{L} \int_{-L / 2}^{L / 2} d x x \sin \left(\frac{2 n \pi x}{L}\right)=\frac{1}{n \pi}\left[-x \cos \left(\frac{2 n \pi x}{L}\right)+\left.\frac{L}{2 n \pi} \sin \left(\frac{2 n \pi x}{L}\right)\right|_{-L / 2} ^{L / 2}\right. \tag{3.3.12}\\
& =-\frac{L}{n \pi} \cos (n \pi) \tag{3.3.13}
\end{align*}
$$

The Fourier series for this function is thus

$$
\begin{equation*}
f_{2}(x)=\frac{L}{\pi}\left[\sin \left(\frac{2 \pi x}{L}\right)-\frac{1}{2} \sin \left(\frac{4 \pi x}{L}\right)+\frac{1}{3} \sin \left(\frac{6 \pi x}{L}\right)-\frac{1}{4} \sin \left(\frac{8 \pi x}{L}\right)+\cdots\right], \tag{3.3.14}
\end{equation*}
$$

and differs from that of the square wave only by including the even harmonics with opposite sign!

