
3.3.2 Complex Exponentials

We can write the Fourier series in more compact form by using the complex exponential
representation of sine and cosine, as follows
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Using our previous results for {An} and {Bn}, we obtain (n ≥ 0)
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(It is easy to check that the above form also gives the correct result for f̃0 ≡ A0, and for
f̃n = An + iBn.)3

If the interval is scaled to map to an angle θ = 2πx/L, the above expressions simplify to
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with the inverse relations
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The Fourier components f̃n can also be obtained directly from the orthogonality conditions
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where δmn is the Kronecker delta function introduced earlier.

3There is no double counting: in considering sine and cosine modes only positive integers are included,
while both positive and negative integers are allowed for f̃n = f̃∗

−n.


