3.3.2 Complex Exponentials

We can write the Fourier series in more compact form by using the complex exponential representation of sine and cosine, as follows

$$
\begin{equation*}
f(x)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \frac{e^{2 \pi i n x / L}+e^{-2 \pi i n x / L a}}{2}+B_{n} \frac{e^{2 \pi i n x / L}-e^{-2 \pi i n x / L}}{2 i}\right] \equiv \sum_{-\infty}^{\infty} e^{2 \pi i n x / L} \tilde{f}_{n} . \tag{3.3.15}
\end{equation*}
$$

Using our previous results for $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$, we obtain $(n \geq 0)$
$\tilde{f}_{n}=\frac{1}{2}\left(A_{n}-i B_{n}\right)=\frac{1}{L} \int_{0}^{L} d x f(x)\left[\cos \left(\frac{2 \pi n x}{L}\right)-i \sin \left(\frac{2 \pi n x}{L}\right)\right]=\int_{0}^{L} \frac{d x}{L} e^{-2 \pi i n x / L} f(x)$.
(It is easy to check that the above form also gives the correct result for $\tilde{f}_{0} \equiv A_{0}$, and for $\left.\tilde{f}_{n}=A_{n}+i B_{n}.\right)^{3}$

If the interval is scaled to map to an angle $\theta=2 \pi x / L$, the above expressions simplify to

$$
\begin{equation*}
f(\theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \frac{e^{i n \theta}+e^{-i n \theta}}{2}+B_{n} \frac{e^{i n \theta}-e^{-i n \theta}}{2 i}\right] \equiv \sum_{-\infty}^{\infty} e^{i n \theta} \tilde{f}_{n} \tag{3.3.17}
\end{equation*}
$$

with the inverse relations

$$
\begin{equation*}
\tilde{f}_{n}=\frac{1}{2}\left(A_{n}-i B_{n}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta f(\theta)(\cos (n \theta)-i \sin (n \theta))=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{-i n \theta} f(\theta) \tag{3.3.18}
\end{equation*}
$$

The Fourier components \tilde{f}_{n} can also be obtained directly from the orthogonality conditions

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{i(m-n) \theta}=\delta_{m n} \tag{3.3.19}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta function introduced earlier.

[^0]
[^0]: ${ }^{3}$ There is no double counting: in considering sine and cosine modes only positive integers are included, while both positive and negative integers are allowed for $\tilde{f}_{n}=\tilde{f}_{-n}^{*}$.

