3.3.3 Fourier Integrals

It is even more useful to construct Fourier transformations for functions defined on an entire
line —o0 < x < 400. One way to do so is let the length of the interval L go to infinity.
Recall that previously the Fourier series involved sums over exponentials e?** with allowed
values of k discretized (to enforce periodicity) to multiples of 27/ L, as k,, = 2wn/L. Thus as
L — oo the distance between discretized points shrinks, resembling the continuous interval
—o0 < k < +o00. .

The next step is to replace the sum Y f,d*"* in Eq. (3.3.15) with an integral over k.

In doing so, note that an integral segment of size dk includes % points, and thus
S < dk - “dk ~,. .
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The inverse relation of Eq. (3.3.16) now takes the form
f(k)=Lf, :/ dof(z)e k. (3.3.22)
Thus, any function f(x) can be represented as
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where the Fourier transform of the function is given by
f(k) = / dxe™®® f(x). (3.3.24)
The key to this transformation is the orthogonality relation
/_Oo g—ieik(w_m/) =0(x—12), (3.3.25)

where 0(z — a) known as the Dirac delta-function is a limiting function highly peaked at
r = a, and zero every where else, such that

/dl’5(l’ —a)g(z) =g(a), (3.3.26)

for any function g(z). Comparison of Egs. (3.3.19) and (3.3.25) indicates the close correspon-
dence between the discrete (Kronecker) and continuous (Dirac) delta-functions. However,
whereas 0,,,, is dimensionless, §(z—a) is a density and carries inverse dimensions of x. Think-
ing of the continuous delta-function as a density helps to understand why its value is infinite
when its argument is zero: a unit value has to be obtained by integrating this density over
an infinitesimal interval.



