
3.4 Scalar fields in higher dimensions

3.4.1 Locality, uniformity, and isotropy

In the previous sections we considered a field u(x) defined along a one dimensional interval.
There are many more cases in which we are interested in the variations of a field in higher
dimensions. Two dimensional examples include waves on the surface of water, vibrations of
a drum or a soap film, distortions of a membrane or plate. The temperature or pressure of
a gas are instances from three dimensions, all corresponding to a scalar (single component)
field. (The velocity field of a fluid, electric and magnetic fields, are examples of vector fields
that will not be discussed in this section.)

A particular configuration of the field in d-dimensional space shall be represented by the
function h(x), where the vector x = (x1, x2, · · · , xd) indicates a position in this space. As
in Eq. (3.1.10) we would like to construct a force density F , which is a functional of the
configuration h(x). We shall proceed by making the following assumptions:

• Locality: We assume that the force density at a particular location x is a reasonably
smooth functional that depends on the value of the function at x and “nearby” points.
What is meant by the latter is the relevant variations of are over sufficiently long scales
(compared to any underlying microscopic physical scale) that they can be adequately
be captured by the first few terms of a gradient expansion. (Much like the first few
terms of a Taylor series present a good enough description of a smooth function for
small amplitudes.) Since F is a scalar, using the summation convention, we generalize
Eq. (3.1.10) to

F(x) = A0+A1h+Bi∂ih+Cij∂i∂jh+ · · ·+A2
h2

2
+Di h∂ih+Eij ∂ih∂jh+ · · · . (3.4.1)

Here, (A0.A1, A2) are familiar coefficients in a Taylor expansion of a function, {Bi}
indicate components of a d-dimensional vector that appear as coefficients of gradient
terms (∂ih = ∂h

∂xi
). The coefficients of the set of second derivatives ∂i∂jh = ∂2h

∂xi∂xj
from

a d × d matrix C. We can construct higher order terms in the series using various
powers of h and combinations of partial derivatives, using the rule that any vector
index must appear twice in accordance with the summation convention.

• Uniformity: In principle all coefficients appearing in Eq. (3.4.1) could vary as a func-
tion of position x. This was also a possibility for the one dimensional force density
Eq. (3.4.1), and even earlier in Eq. (3.1.6) for the force on an elastic band. Its ab-
sence in the latter case was due to the assumption that all the underlying springs in
Eq. (3.1.1) are identical. Similarly, for a uniform system in which all positions in space
are equivalent, the coefficients appearing in Eq. (3.4.1) will be constants independent
of x.

• Isotropy: The coefficients {Bi} and {Di} thus represent vectors pointing to particular
directions in x space that are intrinsic to the problem under study. Now consider a



featureless space such as the surface of water at rest in a bucket. Ignoring the edges of
the bucket, all directions along the two dimensional surface are equivalent. Since there
is no intrinsic direction in this problem (along the surface), the coefficients {Bi} and
{Di} must be zero in this case.4 The equivalence of all directions, known as isotropy
constrains all terms in the expansion. For example, the only possible isotropic matrices
are proportional to unity, i.e. Cij ∝ Dij ∝ δij. Thus, for a uniform and isotropic system
Eq. (3.4.1) simplifies to

F(x) = A0 + A1h+ C∇2h + · · ·+ A2
h2

2
+ E(∇h)2 + · · · . (3.4.2)

• Stability: If the configuration h(x) = 0 represents stable equilibrium, we are con-
strained as before to set A0 = 0, A1 < 0, and C > 0. We thus end up with a simple
generalization of Eq. (3.1.11) to

F(x) = −Jh +K∇2h . (3.4.3)

• Once more, with an expansion limited to the two terms in Eq. (3.4.3), the force density
can be obtained from gradient descent in a functional

V [h(x)] =

∫

ddx

[

J

2
h2 +

K

2
(∇h)2

]

. (3.4.4)

4If we instead consider water flowing along a pipe, the local flow velocity !v provides a particular direction,
and the force density does admit !B ∝ !v, describing advection.


