
3.4.3 Normal modes with a rectangular frame

Consider a drum head, or a soap film, stretched on a wire frame. The deformations about
the flat shape must vanish on the frame, similar to the (Dirichlet) pinned ends of a rubber
band. For a rectangular domain, extending in the x direction from 0 to Lx, and in the y
direction from 0 to Ly, it is most natural to search for a separable solution of the form

h(x, y, t) = X(x)Y (y)T (t) . (3.4.14)

Substituting this form into Eq. (3.4.13), and dividing by h = XY T leads to
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Since each term in the above equation depends on a separate argument, the only way for the
equality to hold is if each term is independent of its argument, i.e. a constant. In analogy
to the one dimensional case, we define the constants as
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where ω is the angular frequency, and k = (kx, ky) is the two dimensional wave-vector. The
frequency and wave-vector are related by the dispersion relation
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y is the magnitude of the wave-vector.
The problem is now reduced to three SHO equations for the functions T , X , and Y , and

hence admits the general solution

h(x, y, t) = A sin (kxx+ θx) sin (kyy + θy) cos (ωt+ φ) . (3.4.18)

To satisfy the boundary conditions of vanishing h at x = 0 and y = 0, we must set θx =
θy = 0, while the boundary conditions at the other two edges constrain kxLx and kyLy to be
multiples of π. Hence the normal modes of the soap film on a rectangular frame are given
by
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for integer n and m. The corresponding wave-number and frequency are
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