
3.4.4 Radial Laplacian on a circle

In many two dimensional situations the natural boundary conditions and corresponding
deformations have circular, rather than rectangular symmetry. An example is provided by
a soap film on a circular frame of radius R. Let us initially focus on deformations that
are independent of the polar angle θ and only depend on a radial distance r from a central
point, such that h(x, y, t) = h(r, t). To calculate the forces appropriate to this case consider
a infinitesimal ring on the surface, from r to r + dr. Since h(r) is a deformation out of the
plane at this point, the length of a segment stretching radially on the field from r to r + dr
satisfies d"2 = dr2 + dh2, i.e. d" = dr
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1 + (dh/dr)2. The area of the ring is thus extended
by the deformation to 2πrd" = 2πrdr

√

1 + (dh/dr)2, resulting in a surface tension energy
(see Eq. (3.4.10))
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leading to a force on the ring
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This “force density” actually acts on an infinitesimal ring of mass (2πrdr)ρ (where ρ is the
mass density), resulting in the equation of motion
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Dividing by 2πrS, and setting v2 = S/ρ gives
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Note that despite the fact that h(r) depends on only one radial coordinate, the form of ∇2h
is different from that of a simple second derivative in the one dimensional case.


