3.4.4 Radial Laplacian on a circle

In many two dimensional situations the natural boundary conditions and corresponding deformations have circular, rather than rectangular symmetry. An example is provided by a soap film on a circular frame of radius R. Let us initially focus on deformations that are independent of the polar angle θ and only depend on a radial distance r from a central point, such that $h(x, y, t)=h(r, t)$. To calculate the forces appropriate to this case consider a infinitesimal ring on the surface, from r to $r+d r$. Since $h(r)$ is a deformation out of the plane at this point, the length of a segment stretching radially on the field from r to $r+d r$ satisfies $d \ell^{2}=d r^{2}+d h^{2}$, i.e. $d \ell=d r \sqrt{1+(d h / d r)^{2}}$. The area of the ring is thus extended by the deformation to $2 \pi r d \ell=2 \pi r d r \sqrt{1+(d h / d r)^{2}}$, resulting in a surface tension energy (see Eq. (3.4.10))

$$
\begin{equation*}
V[h]=S \int_{0}^{R}(2 \pi r d r) \sqrt{1+\left(\frac{\partial h}{\partial r}\right)^{2}} \tag{3.4.21}
\end{equation*}
$$

leading to a force on the ring

$$
\begin{equation*}
\mathcal{F}(r)=-\frac{\delta V}{\delta h(r)}=S \frac{\partial}{\partial r}\left[2 \pi r \frac{\frac{\partial h}{\partial r}}{\sqrt{1+\left(\frac{\partial h}{\partial r}\right)^{2}}}\right] \approx S \frac{\partial}{\partial r}\left(2 \pi r \frac{\partial h}{\partial r}\right) \tag{3.4.22}
\end{equation*}
$$

This "force density" actually acts on an infinitesimal ring of mass ($2 \pi r d r$) ρ (where ρ is the mass density), resulting in the equation of motion

$$
\begin{equation*}
\rho(2 \pi r d r) \frac{\partial^{2} h(r, t)}{\partial t^{2}}=S d r \frac{\partial}{\partial r}\left(2 \pi r \frac{\partial h}{\partial r}\right) . \tag{3.4.23}
\end{equation*}
$$

Dividing by $2 \pi r S$, and setting $v^{2}=S / \rho$ gives

$$
\begin{equation*}
\frac{1}{v^{2}} \frac{\partial^{2} h}{\partial t^{2}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)=\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r} \tag{3.4.24}
\end{equation*}
$$

Note that despite the fact that $h(r)$ depends on only one radial coordinate, the form of $\nabla^{2} h$ is different from that of a simple second derivative in the one dimensional case.

