3.5.1 Laplacian on a circle, including angular variations

Let us reexamine the results of Sec. 3.4.4 by allowing for variations in both the radial and polar directions. An infinitesimal element has size $d r$ in the radial direction and $r d \phi$ in the tangential direction. The resulting area element is

$$
\begin{equation*}
d A=(d r)(r d \phi) \tag{3.5.1}
\end{equation*}
$$

By following variations of $h(r, \phi)$ along the sides of this element, we find

$$
\begin{equation*}
(\nabla h)^{2}=\left(\frac{\partial h}{\partial r}\right)^{2}+\left(\frac{\partial h}{r \partial \phi}\right)^{2}=\left(\frac{\partial h}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial h}{\partial \phi}\right)^{2} . \tag{3.5.2}
\end{equation*}
$$

The generalization of Eq. (3.4.24) now yields the equation of motion for the field $h(r \phi, t)$ on this area element as

$$
\begin{equation*}
\rho(d r r d \phi) \frac{\partial^{2} h(r, \phi, t)}{\partial t^{2}}=S d r d \phi\left[\frac{\partial}{\partial r}\left(r \frac{\partial h(r, \phi, t)}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h(r, \phi, t)}{\partial \phi^{2}}\right] . \tag{3.5.3}
\end{equation*}
$$

The wave equation in polar coordinates thus reads

$$
\begin{equation*}
\frac{1}{v^{2}} \frac{\partial^{2} h}{\partial t^{2}}=\nabla^{2} h=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \phi^{2}}=\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \phi^{2}} \tag{3.5.4}
\end{equation*}
$$

We can again try separable solutions of the form

$$
\begin{equation*}
h(r, \phi, t)=f(r) \Phi(\phi) T(t) \tag{3.5.5}
\end{equation*}
$$

which after dividing the equation by $h=T f \Phi$ yields

$$
\begin{equation*}
\frac{1}{v^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=\frac{f^{\prime \prime}(r)}{f(r)}+\frac{1}{r} \frac{f^{\prime}(r)}{f(r)}+\frac{1}{r^{2}} \frac{\Phi^{\prime \prime}}{\Phi} \tag{3.5.6}
\end{equation*}
$$

It is not immediately apparent that the Φ and f functions are independent. However, the angular dependence must satisfy the periodicity requirement $\Phi(\phi+2 \pi)=\Phi(\phi)$, and hence can be constructed as superposition of modes

$$
\begin{equation*}
\Phi(\phi) \propto \cos \left(n \phi+\theta_{n}\right), \quad \text { with } \quad \Phi^{\prime \prime}=-n^{2} \Phi \quad \text { for integer } n \tag{3.5.7}
\end{equation*}
$$

We can now set each side of Eq. (3.5.6) to a constant, say k^{2}. The left hand side then reduces to the standard SHO equation, with solutions $T(t) \propto \cos (k v t+\phi)$. The right hand side leads to the generalization of Eq. (3.4.27) to

$$
\begin{equation*}
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)-\frac{n^{2}}{r^{2}} f(r)=k^{2} f(r) \tag{3.5.8}
\end{equation*}
$$

The solutions to this equation also cannot be expressed in terms of algebraic or exponential functions, and are known as n-th order Bessel functions,

$$
\begin{equation*}
f(r)=A J_{n}(k r) \quad \text { for integer } n . \tag{3.5.9}
\end{equation*}
$$

