
3.5.2 Spherical coordinates

In Sec. 3.4.4 we presented the form on the Laplacian operator, and its normal modes, in
a system with circular symmetry. In addition to the radial coordinate r, a point is now
indicated by two angles θ and φ, as indicated in the figure below. The original Cartesian
coordinates are now related to the spherical coordinates by








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x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

, for 0 ≤ θ ≤ π and 0 ≤ φ < 2π . (3.5.10)
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Infinitesimal variations in the radial and two angular directions, lead to changes dr, r dθ,
and r sin(θ) dφ respectively, resulting in the volume element

dV = (dr)(r dθ)(r sin(θ) dφ) = r2 sin θ dr dθ dφ . (3.5.11)

Generalizing Eq. (3.5.2), by following variations of a scalar function h(r, θ,φ) along the sides
of this element, we find
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(3.5.12)
We can now find the Laplacian operator in spherical coordinates by considering the variations
of
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As in Eq. (3.5.3), considerations of a “force density” leads to

[r2 sin θ dr dθ dφ]∇2h = dr dθ dφ
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The Laplacian in spherical coordinates is thus obtained as
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