3.5.2 Spherical coordinates

In Sec. 3.4.4 we presented the form on the Laplacian operator, and its normal modes, in
a system with circular symmetry. In addition to the radial coordinate r, a point is now
indicated by two angles # and ¢, as indicated in the figure below. The original Cartesian
coordinates are now related to the spherical coordinates by

x = rsin(f) cos(¢)
y=rsin(d)sin(¢) , for 0<O<7m and 0<¢<2rm. (3.5.10)

z =rcos()

Infinitesimal variations in the radial and two angular directions, lead to changes dr, r df,
and 7 sin(f) d¢ respectively, resulting in the volume element

dV = (dr)(r dO)(r sin(0) d¢) = r* siné dr do d¢. (3.5.11)

Generalizing Eq. (3.5.2), by following variations of a scalar function h(r, 6, ¢) along the sides
of this element, we find
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We can now find the Laplacian operator in spherical coordinates by considering the variations

of
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As in Eq. (3.5.3), considerations of a “force density” leads to
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The Laplacian in spherical coordinates is thus obtained as
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