3.5.3 Diffusion within a sphere

As an application of spherical coordinates, let us consider the diffusion of a scalar density
field n(7,t) within a spherical volume of radius R. Assuming an initial condition that is
spherically symmetric, i.e. a density n(r,t = 0) that depends only on the radial coordinate
r and is independent of the angles 6 and ¢, the diffusion equation simplifies to
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Where D is the diffusion coefficient, and we have used the radial part of Eq. (3.6.35).
Looking for separable solutions of the form n(r,t) = R(r)T'(t) leads to the pair of equa-

tions
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where for ease of later notation we have set the constant of proportionality to —k2. The
solution to 7'(t) is an exponential decay. While not immediately apparent, a solution to the
radial function is sin(kr)/r as can be checked by substitution. Thus the family of separable
solutions, parametrized by k, have the simple form
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Possible boundary conditions for the diffusion equation are:
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e (Closed boundary conditions which forbid exit of material. The absence of flux leads
to a Neumann boundary condition with Vn = g—ff = 0.

e Absorbing boundary conditions are an extreme of open boundary conditions in which
the material disappears at the boundary (absorbed or escaping to far away), leading
to the Dirichlet condition n = 0 at the boundary.

Here we shall consider absorbing boundary conditions with n(R,t) = 0. This condition
quantizes possible values of k in Eq. (3.5.18) to
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The division by r renders the functions sin(k, R)/r non-orthogonal if simply integrated over r.
However, the appropriate orthogonality condition pertains to spherically symmetric functions

in three dimensions, and
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Indeed, any radially symmetric function vanishing at R can be represented as a superposition
of such functions, including the initial condition n(r,t = 0) = ny(r), as
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Integrating both sides of the equation after multiplication by sin(k,,r)/r, and using Eq.(3.5.20),

leads to
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As an appropriate analog of the Dirac delta function, consider an initial “mass” M of
diffusing material concentrated near to origin r = 0. Using the result lim,_,osin(k,,r)/r =
k.., we then find
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The time evolution of this density is now given by
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The terms in the sum corresponding to larger values of n decay more rapidly, such that at
very long times only the n = 1 survives and
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