3.5.3 Diffusion within a sphere

As an application of spherical coordinates, let us consider the diffusion of a scalar density field $n(\vec{r}, t)$ within a spherical volume of radius R. Assuming an initial condition that is spherically symmetric, i.e. a density $n(r, t=0)$ that depends only on the radial coordinate r and is independent of the angles θ and ϕ, the diffusion equation simplifies to

$$
\begin{equation*}
\frac{\partial n}{\partial t}=D \nabla^{2} n=D \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial n}{\partial r}\right) \tag{3.5.16}
\end{equation*}
$$

Where D is the diffusion coefficient, and we have used the radial part of Eq. (3.6.35).
Looking for separable solutions of the form $n(r, t)=R(r) T(t)$ leads to the pair of equations

$$
\begin{equation*}
\frac{1}{R} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{\partial r}\right)=-k^{2}, \quad \text { and } \quad \frac{\dot{T}}{T}=-D k^{2} \tag{3.5.17}
\end{equation*}
$$

where for ease of later notation we have set the constant of proportionality to $-k^{2}$. The solution to $T(t)$ is an exponential decay. While not immediately apparent, a solution to the radial function is $\sin (k r) / r$ as can be checked by substitution. Thus the family of separable solutions, parametrized by k, have the simple form

$$
\begin{equation*}
n(r, t) \propto \frac{\sin (k r)}{r} e^{-D k^{2} t} \tag{3.5.18}
\end{equation*}
$$

Possible boundary conditions for the diffusion equation are:

- Closed boundary conditions which forbid exit of material. The absence of flux leads to a Neumann boundary condition with $\vec{\nabla} n=\frac{\partial n}{\partial r} \hat{r}=0$.
- Absorbing boundary conditions are an extreme of open boundary conditions in which the material disappears at the boundary (absorbed or escaping to far away), leading to the Dirichlet condition $n=0$ at the boundary.
Here we shall consider absorbing boundary conditions with $n(R, t)=0$. This condition quantizes possible values of k in Eq. (3.5.18) to

$$
\begin{equation*}
k_{n}=\frac{n \pi}{R}, \quad \text { with } \quad n=1,2,3, \cdots . \tag{3.5.19}
\end{equation*}
$$

The division by r renders the functions $\sin \left(k_{n} R\right) / r$ non-orthogonal if simply integrated over r. However, the appropriate orthogonality condition pertains to spherically symmetric functions in three dimensions, and

$$
\begin{equation*}
\int_{0}^{R}\left(4 \pi r^{2} d r\right) \frac{\sin \left(k_{n} r\right)}{r} \frac{\sin \left(k_{m} r\right)}{r}=2 \pi R \delta_{m n} \tag{3.5.20}
\end{equation*}
$$

Indeed, any radially symmetric function vanishing at R can be represented as a superposition of such functions, including the initial condition $n(r, t=0)=n_{0}(r)$, as

$$
\begin{equation*}
n_{0}(r)=\sum_{n=1}^{\infty} A_{n} \frac{\sin \left(k_{n} r\right)}{r} \tag{3.5.21}
\end{equation*}
$$

Integrating both sides of the equation after multiplication by $\sin \left(k_{m} r\right) / r$, and using Eq.(3.5.20), leads to

$$
\begin{equation*}
\int_{0}^{R}\left(4 \pi r^{2} d r\right) n_{0}(r) \frac{\sin \left(k_{m} r\right)}{r}=2 \pi R A_{m} \tag{3.5.22}
\end{equation*}
$$

As an appropriate analog of the Dirac delta function, consider an initial "mass" M of diffusing material concentrated near to origin $r=0$. Using the result $\lim _{r \rightarrow 0} \sin \left(k_{m} r\right) / r=$ k_{m}, we then find

$$
\begin{equation*}
2 \pi R A_{m}=k_{m} \int_{0}^{R}\left(4 \pi r^{2} d r\right) n_{0}(r)=M, \quad \Rightarrow \quad A_{m}=\frac{M k_{m}}{2 \pi R}=\frac{M}{2 R^{2}} m \tag{3.5.23}
\end{equation*}
$$

The time evolution of this density is now given by

$$
\begin{equation*}
n(r, t)=\frac{M}{2 R^{2}} \sum_{n=1}^{\infty} \frac{n}{r} \sin \left(\frac{\pi n r}{R}\right) \exp \left(-\frac{n^{2} \pi^{2} D t}{R^{2}}\right) \tag{3.5.24}
\end{equation*}
$$

The terms in the sum corresponding to larger values of n decay more rapidly, such that at very long times only the $n=1$ survives and

$$
\begin{equation*}
n\left(r, t \gg R^{2} / D\right)=\frac{M}{2 R^{2}} \frac{1}{r} \sin \left(\frac{\pi r}{R}\right) \exp \left(-\frac{\pi^{2} D t}{R^{2}}\right) . \tag{3.5.25}
\end{equation*}
$$

