
3.6.1 Continuity equation

We arrived at the form of the Laplacian operator in circular and spherical coordinates by
considering variations of U =

∫

dV (∇h)2/2. It is useful to gain a different perspective by
examining the problem of diffusion of a density field n(!r, t). We observed in Sec. (3.3.4)
that the changes in density can be attributed to a current that moves the diffusing material
around. While the density is a scalar field, the diffusive current is a vector field

!J = −D!∇n , (3.6.1)

which smoothens density by moving diffusers from high to low concentrations. As already
noted in Eq. (3.1.19), in one dimension
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= J(a)− J(b) , (3.6.2)

the change in density for each interval is related to the difference between incoming and
outgoing currents. Given the conservation of the net diffusive substance, we should be able
to construct the generalization of the above equation to higher dimensions:

• Consider a region of d-dimensional space of volume V , bounded by a surface of area
S. We expect the change in the amount of diffusive material within V to be related
to the net flux of material taken in or out through the surface by the current !J . This
can be written as
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!J · !dS , (3.6.3)

where !dS indicates the flux through a small element of surface of area dS; the direction
of !dS is taken to point outward, normal to the area element.

• For an infinitesimal volume element in the form of a hyper-cube, the above equality
leads to
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The contribution along each direction i comes from the difference in fluxes δJi =
∂Ji
∂xi

dxi,
passing through the orthogonal surfaces of area dSi. For the hypercube, dV = S1 dx1 =
S2 dx2 = · · · , resulting in
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. (3.6.5)

• For any vector field field !v(!r), a scalar divergence is defined by (using the summation
convention)

div !v = ∂ivi = !∇ · !v . (3.6.6)



• The conservation of (in this case diffusive) material can then be expressed by the
continuity equation,
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= −!∇ · !J ,

∂n

∂t
= D∇2n , for !J = −D!∇n . (3.6.7)

• While the above formulae were motivated by conservation of matter during diffusion,
Eq. (3.6.1) embodies the highly important and useful divergence theorem

∫

volume V

dV div!v = −
∫

surface S

!v · !dS , (3.6.8)

namely that the flux of a vector field !v through any closed surface is equation to the
integral of the divergence of !v though the enclosed volume.


