3.6.3 Cylindrical and spherical coordinates

Cylindrical coordinates simply extend the 2D polar coordinates, Eq. (3.6.11), by adding a
third coordinate, z, pointing out of the plane.
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From the Jacobian
cos¢p —rsing 0
J(r,¢,2) = | sing rcos¢p 0 |, (3.6.26)
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we obtain the metric factors
h.,=1, hy =, h,=1, and |detJ|=r. (3.6.27)
For a scalar field ®(r, ¢, z), we then obtain
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A vector field can also be presented in these coordinates with components (v, vy, v,) that
are functions of (7, ¢, z). The divergence of the vector is then obtained as
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Spherical coordinates provide another representation of three dimensional space, replacing

the axiz z with the angle € to the z axis, such that z = r cos(f). With r now indicating the
distance to the origin, its projection onto the 2D plane has length rsin(6), such that

(3.6.30)

x =rsin(f)cos(¢) y=rsin(d)sin(¢) z=rcos(d), with 0<6 <7 and0 < ¢ <27.
(3.6.31)
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The Jacobian associated with this transformation is
dr Oz Oz . . .
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J(r,0,0) = % % %—fj) = | sinfsin¢g rcos H.Singb rsinfcos¢ | . (3.6.32)
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From the magnitudes of the column vectors, we find
h, =1 hg =1, hy=sinb, while |detJ| = r*sinf. (3.6.33)

For a scalar field ®(r, 6, ¢), we then have
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For a vector field 7 = (v, vy, vy),
= 1 0 2 1 8 . 1 8%
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