3.6.4 Dynamics of vector Fields

We introduced scalar fields in one dimension by considering the limit of a chain of N particles
connected by springs or via a rubber band. While we assumed that the particles were
constrained to move along the line, with displacements quantified by {u,}, they could have
well been allowed to move in two or three dimensions, with corresponding displacements
indicated by a set of vectors {u,}. Taking the continuum limit (na — x € [0, L = Na]) now
leads to a vector field u(z).

In the above example of the chain, the coordinate x is one dimensional, while the vector
field u(x) can be 2, or 3 dimensional. More generally, we can consider vector fields u(x) where
@ = (uq,us, -, Uy) has m components spanning a d-dimensional space of coordinates x =
(x1, 9, -+ ,x4). In the majority of cases m = d, as for the case of the electric and magnetic
fields in three dimensions. Another example, most directly generalizing displacements of
a chain to three dimensions corresponds to the distortions (%) of a solid in m = d = 3
dimensions. The gradient of a scalar field is also an example of a vector field.

Generalizing the approach we have followed for particles and scalar fields, we may seek
to describe the changes in the vector field as a function of time, #(x,t) via a vectorial variant
of PDEs as o Pa

U U -

lFn + e + .= F(x), (3.6.37)

where the vector force density depends on the vector field (x) and its derivatives (in a
gradient expansion) around the point x.

Let us focus on the Taylor expansion of the force F(x) for small distortions @(x), say in
the relevant case of a solid or gel in three dimensions. We can followi the procedure described
in Sec. 3.4.1, and employing the constrains of locality and uniformity construct a gradient
expansion for the vectorial force field. The mathematical consequence of isotropy, however, is
more interesting: In dealing with scalar quantities the contraction of two gradient operators
lead to the term V2h, for vectorial quantities, one gradient can be contracted with the vector
field, resulting in a new contribution to the gradient expansion. In index notation, we thus
find

fa(X) = —Ju, + K@g@gua + L@oﬁguB + -0 (3638)

in addition to the usual Laplacian— now for the vector field @(Z), there is a contribution that
is the gradient of the divergence of the field- V(V - @).

The dispersion relation governing the PDE of Eq. (3.6.37), with the force density in
Eq.(3.6.38) is obtained by considering the (vectorial) trial solution

Ua(F) oc Rl R[F )¢, , (3.6.39)

with é, indicating the a-th component of a unit vector é. Substituting the above form in
the equation leads to

[—inw — pw2 + J] éa = — [K]{?2(5a5 + L]{Za]{?g] ég = —Kagéﬁ s (3640)

with a matrix relation emerging from the mixed derivative 0,03.



While the wave-vector k does introduce a particular direction, the matrix K still reflects
our assumption of isotropy; its eigenvectors are either parallel or orthogonal to k. This leads
to two types of modes for the isotropic vector field:

e Longitudinal modes correspond to deformations parallel to the wave-vector, é, || k,
with
Kos(ée)s = (K + L)E*(é)a (3.6.41)

since kg(és)s = k. The resulting dispersion relation is obtained as solution of the

polynomial equation
—inw — pw® + J = —(K + L)k*. (3.6.42)

For example, the wave-equation for n = J = 0 admits longitudinal frequencies w, =

+/(K + L)k?/p, with wave-speed v, = /(K + L)/p.

e Transverse modes have deformations perpendicular to the wave-vector, with kg(é;)s =
0, leading to
Kos(éo)s = Kk*(é)a - (3.6.43)

While there is only one longitudinal direction for each k, there are 2 (or (d — 1) in
d-dimensions) transverse directions. The resulting dispersion relation satisfies

—inw — pw? + J = —Kk*. (3.6.44)

Clearly the transverse modes of the wave-equation (with n = J = 0) have a different
wave-speed of v; = /K /p.

An isotropic elastic material (such as glass) admits both types of modes. A gas, however,
does not respond to shear deformations and cannot support longitudinal modes. Sound waves
are longitudinal pressure waves. The electromagnetic field in free space satisfies V - E=0
and thus cannot have a component parallel to the wave-vector. The two polarizations of
electromagnetic wave are transverse to its travel direction.



