
3.6.4 Dynamics of vector Fields

We introduced scalar fields in one dimension by considering the limit of a chain of N particles
connected by springs or via a rubber band. While we assumed that the particles were
constrained to move along the line, with displacements quantified by {un}, they could have
well been allowed to move in two or three dimensions, with corresponding displacements
indicated by a set of vectors {!un}. Taking the continuum limit (na→ x ∈ [0, L = Na]) now
leads to a vector field !u(x).

In the above example of the chain, the coordinate x is one dimensional, while the vector
field !u(x) can be 2, or 3 dimensional. More generally, we can consider vector fields !u(x) where
!u = (u1, u2, · · · , um) has m components spanning a d-dimensional space of coordinates x =
(x1, x2, · · · , xd). In the majority of cases m = d, as for the case of the electric and magnetic
fields in three dimensions. Another example, most directly generalizing displacements of
a chain to three dimensions corresponds to the distortions !u(!x) of a solid in m = d = 3
dimensions. The gradient of a scalar field is also an example of a vector field.

Generalizing the approach we have followed for particles and scalar fields, we may seek
to describe the changes in the vector field as a function of time, !u(x, t) via a vectorial variant
of PDEs as
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where the vector force density depends on the vector field !u(x) and its derivatives (in a
gradient expansion) around the point x.

Let us focus on the Taylor expansion of the force !F(x) for small distortions !u(x), say in
the relevant case of a solid or gel in three dimensions. We can followi the procedure described
in Sec. 3.4.1, and employing the constrains of locality and uniformity construct a gradient
expansion for the vectorial force field. The mathematical consequence of isotropy, however, is
more interesting: In dealing with scalar quantities the contraction of two gradient operators
lead to the term ∇2h, for vectorial quantities, one gradient can be contracted with the vector
field, resulting in a new contribution to the gradient expansion. In index notation, we thus
find

!Fα(x) = −Juα +K∂β∂βuα + L∂α∂βuβ + · · · ; (3.6.38)

in addition to the usual Laplacian– now for the vector field !u(!x), there is a contribution that
is the gradient of the divergence of the field– ∇(∇ · !u).

The dispersion relation governing the PDE of Eq. (3.6.37), with the force density in
Eq.(3.6.38) is obtained by considering the (vectorial) trial solution

uα(!x) ∝ &[e−iωt]&[ei$k·$x]êα , (3.6.39)

with êα indicating the α-th component of a unit vector ê. Substituting the above form in
the equation leads to

[

−iηω − ρω2 + J
]

êα = −
[

Kk2δαβ + Lkαkβ
]

êβ ≡ −Kαβ êβ , (3.6.40)

with a matrix relation emerging from the mixed derivative ∂α∂β .



While the wave-vector !k does introduce a particular direction, the matrix K still reflects
our assumption of isotropy; its eigenvectors are either parallel or orthogonal to !k. This leads
to two types of modes for the isotropic vector field:

• Longitudinal modes correspond to deformations parallel to the wave-vector, ê% ‖ !k,
with

Kαβ(ê%)β = (K + L)k2(ê%)α , (3.6.41)

since kβ(ê%)β = k. The resulting dispersion relation is obtained as solution of the
polynomial equation

−iηω − ρω2 + J = −(K + L)k2 . (3.6.42)

For example, the wave-equation for η = J = 0 admits longitudinal frequencies ω% =
±
√

(K + L)k2/ρ, with wave-speed v% =
√

(K + L)/ρ.

• Transverse modes have deformations perpendicular to the wave-vector, with kβ(êt)β =
0, leading to

Kαβ(ê%)β = Kk2(ê%)α . (3.6.43)

While there is only one longitudinal direction for each !k, there are 2 (or (d − 1) in
d-dimensions) transverse directions. The resulting dispersion relation satisfies

−iηω − ρω2 + J = −Kk2 . (3.6.44)

Clearly the transverse modes of the wave-equation (with η = J = 0) have a different
wave-speed of vt =

√

K/ρ.

An isotropic elastic material (such as glass) admits both types of modes. A gas, however,
does not respond to shear deformations and cannot support longitudinal modes. Sound waves
are longitudinal pressure waves. The electromagnetic field in free space satisfies ∇ · !E = 0
and thus cannot have a component parallel to the wave-vector. The two polarizations of
electromagnetic wave are transverse to its travel direction.


