3.6.4 Dynamics of vector Fields

We introduced scalar fields in one dimension by considering the limit of a chain of N particles connected by springs or via a rubber band. While we assumed that the particles were constrained to move along the line, with displacements quantified by $\left\{u_{n}\right\}$, they could have well been allowed to move in two or three dimensions, with corresponding displacements indicated by a set of vectors $\left\{\vec{u}_{n}\right\}$. Taking the continuum limit ($n a \rightarrow x \in[0, L=N a]$) now leads to a vector field $\vec{u}(x)$.

In the above example of the chain, the coordinate x is one dimensional, while the vector field $\vec{u}(x)$ can be 2 , or 3 dimensional. More generally, we can consider vector fields $\vec{u}(\mathbf{x})$ where $\vec{u}=\left(u_{1}, u_{2}, \cdots, u_{m}\right)$ has m components spanning a d-dimensional space of coordinates $\mathbf{x}=$ $\left(x_{1}, x_{2}, \cdots, x_{d}\right)$. In the majority of cases $m=d$, as for the case of the electric and magnetic fields in three dimensions. Another example, most directly generalizing displacements of a chain to three dimensions corresponds to the distortions $\vec{u}(\vec{x})$ of a solid in $m=d=3$ dimensions. The gradient of a scalar field is also an example of a vector field.

Generalizing the approach we have followed for particles and scalar fields, we may seek to describe the changes in the vector field as a function of time, $\vec{u}(\mathbf{x}, t)$ via a vectorial variant of PDEs as

$$
\begin{equation*}
\eta \frac{\partial \vec{u}}{\partial t}+\rho \frac{\partial^{2} \vec{u}}{\partial t^{2}}+\cdots=\overrightarrow{\mathcal{F}}(\mathbf{x}) \tag{3.6.37}
\end{equation*}
$$

where the vector force density depends on the vector field $\vec{u}(\mathbf{x})$ and its derivatives (in a gradient expansion) around the point \mathbf{x}.

Let us focus on the Taylor expansion of the force $\overrightarrow{\mathcal{F}}(\mathbf{x})$ for small distortions $\vec{u}(\mathbf{x})$, say in the relevant case of a solid or gel in three dimensions. We can followi the procedure described in Sec. 3.4.1, and employing the constrains of locality and uniformity construct a gradient expansion for the vectorial force field. The mathematical consequence of isotropy, however, is more interesting: In dealing with scalar quantities the contraction of two gradient operators lead to the term $\nabla^{2} h$, for vectorial quantities, one gradient can be contracted with the vector field, resulting in a new contribution to the gradient expansion. In index notation, we thus find

$$
\begin{equation*}
\overrightarrow{\mathcal{F}}_{\alpha}(\mathbf{x})=-J u_{\alpha}+K \partial_{\beta} \partial_{\beta} u_{\alpha}+L \partial_{\alpha} \partial_{\beta} u_{\beta}+\cdots \tag{3.6.38}
\end{equation*}
$$

in addition to the usual Laplacian- now for the vector field $\vec{u}(\vec{x})$, there is a contribution that is the gradient of the divergence of the field $-\nabla(\nabla \cdot \vec{u})$.

The dispersion relation governing the PDE of Eq. (3.6.37), with the force density in Eq.(3.6.38) is obtained by considering the (vectorial) trial solution

$$
\begin{equation*}
u_{\alpha}(\vec{x}) \propto \Re\left[e^{-i \omega t}\right] \Re\left[e^{i \vec{k} \cdot \vec{x}}\right] \hat{e}_{\alpha} \tag{3.6.39}
\end{equation*}
$$

with \hat{e}_{α} indicating the α-th component of a unit vector \hat{e}. Substituting the above form in the equation leads to

$$
\begin{equation*}
\left[-i \eta \omega-\rho \omega^{2}+J\right] \hat{e}_{\alpha}=-\left[K k^{2} \delta_{\alpha \beta}+L k_{\alpha} k_{\beta}\right] \hat{e}_{\beta} \equiv-\mathbf{K}_{\alpha \beta} \hat{e}_{\beta} \tag{3.6.40}
\end{equation*}
$$

with a matrix relation emerging from the mixed derivative $\partial_{\alpha} \partial_{\beta}$.

While the wave-vector \vec{k} does introduce a particular direction, the matrix \mathbf{K} still reflects our assumption of isotropy; its eigenvectors are either parallel or orthogonal to \vec{k}. This leads to two types of modes for the isotropic vector field:

- Longitudinal modes correspond to deformations parallel to the wave-vector, $\hat{e}_{\ell} \| \vec{k}$, with

$$
\begin{equation*}
\mathbf{K}_{\alpha \beta}\left(\hat{e}_{\ell}\right)_{\beta}=(K+L) k^{2}\left(\hat{e}_{\ell}\right)_{\alpha}, \tag{3.6.41}
\end{equation*}
$$

since $k_{\beta}\left(\hat{e}_{\ell}\right)_{\beta}=k$. The resulting dispersion relation is obtained as solution of the polynomial equation

$$
\begin{equation*}
-i \eta \omega-\rho \omega^{2}+J=-(K+L) k^{2} . \tag{3.6.42}
\end{equation*}
$$

For example, the wave-equation for $\eta=J=0$ admits longitudinal frequencies $\omega_{\ell}=$ $\pm \sqrt{(K+L) k^{2} / \rho}$, with wave-speed $v_{\ell}=\sqrt{(K+L) / \rho}$.

- Transverse modes have deformations perpendicular to the wave-vector, with $k_{\beta}\left(\hat{e}_{t}\right)_{\beta}=$ 0 , leading to

$$
\begin{equation*}
\mathbf{K}_{\alpha \beta}\left(\hat{e}_{\ell}\right)_{\beta}=K k^{2}\left(\hat{e}_{\ell}\right)_{\alpha} . \tag{3.6.43}
\end{equation*}
$$

While there is only one longitudinal direction for each \vec{k}, there are 2 (or $(d-1)$ in d-dimensions) transverse directions. The resulting dispersion relation satisfies

$$
\begin{equation*}
-i \eta \omega-\rho \omega^{2}+J=-K k^{2} . \tag{3.6.44}
\end{equation*}
$$

Clearly the transverse modes of the wave-equation (with $\eta=J=0$) have a different wave-speed of $v_{t}=\sqrt{K / \rho}$.

An isotropic elastic material (such as glass) admits both types of modes. A gas, however, does not respond to shear deformations and cannot support longitudinal modes. Sound waves are longitudinal pressure waves. The electromagnetic field in free space satisfies $\nabla \cdot \vec{E}=0$ and thus cannot have a component parallel to the wave-vector. The two polarizations of electromagnetic wave are transverse to its travel direction.

