
Recap

• The divergence theorem relates the flux of a vector field !v through any closed surface
to the integral of the divergence of !v though the enclosed volume:

∫

volume V

dV div!v = −
∫

surface S

!v · !dS . (3.6.45)

• For a general coordinate system, the expressions for divergence of a vector field and
the Laplacian of a scalar field are given by
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• In spherical coordinates, the corresponding expressions are
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• The isotropic vector field in d-dimensions admits one longitudinal mode parallel to the
wave-vector, and (d− 1) transverse modes perpendicular to it.


