
3.6 Vector fields

3.6.1 Continuity equation

We arrived at the form of the Laplacian operator in circular and spherical coordinates by
considering variations of U =

∫

dV (∇h)2/2. It is useful to gain a different perspective by
examining the problem of diffusion of a density field n(!r, t). We observed in Sec. (3.3.4)
that the changes in density can be attributed to a current that moves the diffusing material
around. While the density is a scalar field, the diffusive current is a vector field

!J = −D!∇n , (3.6.1)

which smoothens density by moving diffusers from high to low concentrations. As already
noted in Eq. (3.1.19), in one dimension
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= J(a)− J(b) , (3.6.2)

the change in density for each interval is related to the difference between incoming and
outgoing currents. Given the conservation of the net diffusive substance, we should be able
to construct the generalization of the above equation to higher dimensions:

• Consider a region of d-dimensional space of volume V , bounded by a surface of area
S. We expect the change in the amount of diffusive material within V to be related
to the net flux of material taken in or out through the surface by the current !J . This
can be written as

d

dt

∫

volume V

dV n = −
∫

surface S

!J · !dS , (3.6.3)

where !dS indicates the flux through a small element of surface of area dS; the direction
of !dS is taken to point outward, normal to the area element.

• For an infinitesimal volume element in the form of a hyper-cube, the above equality
leads to

ṅ(!r, t) dV = −
d
∑

i=1

dSi

(

∂Ji

∂xi
dxi

)

. (3.6.4)

The contribution along each direction i comes from the difference in fluxes δJi =
∂Ji
∂xi

dxi,
passing through the orthogonal surfaces of area dSi. For the hypercube, dV = S1 dx1 =
S2 dx2 = · · · , resulting in

ṅ(!r, t) = −
d
∑

i=1

∂Ji

∂xi
. (3.6.5)

• For any vector field field !v(!r), a scalar divergence is defined by (using the summation
convention)

div !v = ∂ivi = !∇ · !v . (3.6.6)
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• The conservation of (in this case diffusive) material can then be expressed by the
continuity equation,

∂n

∂t
= −!∇ · !J ,

∂n

∂t
= D∇2n , for !J = −D!∇n . (3.6.7)

• While the above formulae were motivated by conservation of matter during diffusion,
Eq. (3.6.1) embodies the highly important and useful divergence theorem

∫

volume V

dV div!v = −
∫

surface S

!v · !dS , (3.6.8)

namely that the flux of a vector field !v through any closed surface is equal to the
integral of the divergence of !v though the enclosed volume.

3.6.2 General change of coordinates

We have seen that is useful to work in a coordinate system appropriate to the properties
and symmetries of the system under consideration, using polar coordinates for analyzing a
circular drum, or spherical coordinates in analyzing diffusion within a sphere. For arriving
at the form of the equation of motion in these coordinate systems we made use of arguments
that we generalize below.

Let us start by considering the simple case of polar coordinates, (r,φ), in the 2D plane
R2 are defined from Cartesian coordinates, (x, y) with −∞ ≤ x, y ≤ ∞, as

r =
√

x2 + y2, φ =







arccos
(

x
r

)

if y ≥ 0 and r &= 0
− arccos

(

x
r

)

if y < 0
undefined if r = 0

, (3.6.9)

and conversely
x = rOs(φ), y = r sin(φ) . (3.6.10)

The same physical problem can be described in Cartesian coordinates or polar coordinates
as they both span the same space (the 2D plane). If the complex number z = x + iy is
constructed from the Cartesian coordinates, then z = r[Os(φ) + i sin(φ)] = reiφ and r = |z|
and φ = arg(z) (defined as the principal branch).

The above equations are an example of a coordinate transformation, or change of vari-
ables. From Eq. (3.6.11) infinitesimal changes in the two sets of coordinates are related
by

dx = drOs(φ)− dφ r sin(φ) and dy = dr sin(φ) + dφ rOs(φ) . (3.6.11)

The relation between infinitesimal changes in two coordinate systems can thus be expressed
as

[

dx
dy

]

= J(r,φ)

[

dr
dφ

]

, (3.6.12)
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in terms of the so-called Jacobian (or Jacobi matrix)

J(r,φ) =

[

∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

]

=

[

Osφ −r sin φ
sin φ rOsφ

]

. (3.6.13)

The inverse Jacobian

J−1(x, y) =
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]

=
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y√
x2+y2

− y
x2+y2

x
x2+y2

]

, (3.6.14)

provides the transformation in the reverse direction.
There are many other useful coordinate systems. Some such as spherical or cylindrical

coordinates are common enough that they bear remembering, but others are specific to a
particular problem. More generally, given a set of coordinates (x1, . . . , xn) on Rn, a set of
functions yi(x1, . . . , xn) for i = 1, . . . n that map Rn → Rn, is a coordinate transformation
and changes in the new coordinates yi are related to changes in the original coordinates
through the Jacobian

J(y1, . . . yn) =







∂x1

∂y1
· · · ∂x1

∂yn
...

. . .
...

∂xn

∂y1
· · · ∂xn

∂yn






. (3.6.15)

The Jacobian is highly useful in computing derivatives and gradient operators in the new
coordinate system:

• The change of variables transforms a function f(!x) in the original coordinates to a
function f(!h) in the new set of coordinates. By application of the chain rule, the
corresponding two vectors of derivatives are related by

∂f

∂yα
=
∂f

∂xi

∂xi

∂yα
,⇒ ∂f

∂!y
= J(!y) · ∂f

∂!x
. (3.6.16)

• The above can be extended to multiple functions that can be collected together as a vec-
tor. For a m-component vector function f(!x) = (f1(!x), . . . , fm(!x)) of an n-component
coordinate vector !x, the matrix of derivatives with respect to a new coordinate vector
!y is

∂f

∂!y
=







∂f1
∂y1

· · · ∂f1
∂yn

...
. . .

...
∂fm
∂y1

· · · ∂fm
∂yn






= J(!y) · ∂f

∂!x
, (3.6.17)

where ∂f
∂$y and ∂f

∂$x are m× n matrices.

• If only one of the new set of coordinates is changed, say y1 by dy1, from Eq. (3.6.15),
the corresponding change in the original Cartesian coordinates is

d!r1 =







∂x1

∂y1
...

∂xn

∂y1






dy1 ≡ (h1 dy1)ê1 . (3.6.18)
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Through the above equation we have defined two important quantities: a unit vector
ê1 pointing along the direction of the change caused by dy1; and a metric factor h1

quantifying (as h1 dy1) the magnitude of the change. The complete sets of {êα} and
{hα} quantify variations along all directions.

• The absolute value of the Jacobian determinant represents the change in volume ele-
ment when making a change of variables while evaluating a integral of a function over
a region. To accommodate for the change of coordinates | detJ| is included as a mul-
tiplicative factor within the integral. This is because the n-dimensional dV element
is in general a parallelepiped in a new coordinate system made up of the infinitesimal
vectors {(hαêα)dyα}. The volume of this infinitesimal parallelepiped is obtained as the
determinant of its edge vectors. For the case of Cartesian to polar coordinates, the
determinant of Eq. (3.6.13) gives

dx dy = | detJ|dr dφ = r(Os2φ+ sin2 ψ)dr dφ = r dr dφ , (3.6.19)

a result we used previously in Eq. (3.5.1).

• The set of metric factors {hα} and corresponding unit vectors {êα} can be used to
construct the gradient operation in the new coordinates as

!∇f =
∑

α

1

hα

∂f

∂yα
êα . (3.6.20)

Clearly, along with Eq. (3.6.18), this leads to the expected df = ∂f
∂yα

dyα. For polar
coordinates, Eq. (3.6.13) indicates that

d!r = dr r̂ + dφ rφ̂ , and !∇f =
∂f

∂r
r̂ +

1

r

∂f

∂φ
φ̂ . (3.6.21)

• To construct the divergence of a vector field !v, we employ the infinitesimal variant of
the divergence theorem, Eq. (3.6.8), as in Eq. (3.6.4)7

div!v dV =
∑

α

dyα
∂

∂yα
(dSαvα) . (3.6.22)

The volume and surface elements in the above formula are related by

dV = | detJ|
∏

α

dyα = (h1 dy1)dS1 = (h1 dy1)dS1 = · · · . (3.6.23)

Dividing by dV thus leads to

div!v = !∇ · !v =
1

| detJ|
∑

α

∂

∂yα

(

| detJ|
hα

vα

)

. (3.6.24)

7The explicit inclusion of the summation symbol
∑

α indicates that the summation convention is no
longer used.

87



• Finally, the Laplacian of a scalar field f in general (curvilinear) coordinates is obtained
as the divergence of the gradient of f , and given by

∇2f =
1

| detJ|
∑

α

∂

∂yα

(

| detJ|
h2
α

∂f

∂yα

)

. (3.6.25)

In the next sections we shall use these general formulae to re-derive the explicit forms
of these operations in two commonly encountered coordinate systems.

3.6.3 Cylindrical and spherical coordinates

Cylindrical coordinates simply extend the 2D polar coordinates, Eq. (3.6.11), by adding a
third coordinate, z, pointing out of the plane.

r

z

x

y

z

φ

From the Jacobian

J(r,φ, z) =





Osφ −r sin φ 0
sinφ rOsφ 0
0 0 1



 , (3.6.26)

we obtain the metric factors

hr = 1 , hφ = r, hz = 1 , and | detJ| = r . (3.6.27)

For a scalar field Φ(r,φ, z), we then obtain

∇Φ =

(

∂Φ

∂r
,
1

r

∂Φ

∂φ
,
∂Φ

∂z

)

, (3.6.28)

and

∇2Φ =
1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2
. (3.6.29)
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A vector field can also be presented in these coordinates with components (vr, vφ, vz) that
are functions of (r,φ, z). The divergence of the vector is then obtained as

!∇ · !v =
1

r

∂

∂r
(rvr) +

1

r

∂vφ
∂φ

+
∂vz
∂z

. (3.6.30)

Spherical coordinates provide another representation of three dimensional space, replacing
the axiz z with the angle θ to the z axis, such that z = rOs(θ). With r now indicating the
distance to the origin, its projection onto the 2D plane has length r sin(θ), such that

x = r sin(θ)Os(φ) y = r sin(θ) sin(φ) z = rOs(θ) , with 0 ≤ θ ≤ π and0 ≤ φ < 2π .
(3.6.31)

θ
r
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The Jacobian associated with this transformation is

J(r, θ,φ) =







∂x
∂r
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∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ






=





sin θOsφ rOsθOsφ −r sin θ sin φ
sin θ sinφ rOsθ sinφ r sin θOsφ

Osθ −r sin θ 0



 . (3.6.32)

From the magnitudes of the column vectors, we find

hr = 1 hθ = r , hφ = sin θ, while | detJ| = r2 sin θ . (3.6.33)

For a scalar field Φ(r, θ,φ), we then have

!∇Φ =

(

∂Φ

∂r
,
1

r

∂Φ

∂θ
,

1

r sin θ

∂Φ

∂φ

)

, (3.6.34)

and

∇2Φ =
1

r2
∂

∂r
(r2

∂Φ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

r2 sin2 θ

∂2Φ

∂φ2
. (3.6.35)

For a vector field !v = (vr, vθ, vφ),

!∇ · !v =
1

r2
∂

∂r

(

r2vr
)

+
1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ
∂φ

. (3.6.36)
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3.6.4 Dynamics of vector Fields

We introduced scalar fields in one dimension by considering the limit of a chain of N particles
connected by springs or via a rubber band. While we assumed that the particles were
constrained to move along the line, with displacements quantified by {un}, they could have
well been allowed to move in two or three dimensions, with corresponding displacements
indicated by a set of vectors {!un}. Taking the continuum limit (na→ x ∈ [0, L = Na]) now
leads to a vector field !u(x).

In the above example of the chain, the coordinate x is one dimensional, while the vector
field !u(x) can be 2, or 3 dimensional. More generally, we can consider vector fields !u(x) where
!u = (u1, u2, · · · , um) has m components spanning a d-dimensional space of coordinates x =
(x1, x2, · · · , xd). In the majority of cases m = d, as for the case of the electric and magnetic
fields in three dimensions. Another example, most directly generalizing displacements of
a chain to three dimensions corresponds to the distortions !u(!x) of a solid in m = d = 3
dimensions. The gradient of a scalar field is also an example of a vector field.

Generalizing the approach we have followed for particles and scalar fields, we may seek
to describe the changes in the vector field as a function of time, !u(x, t) via a vectorial variant
of PDEs as

η
∂!u

∂t
+ ρ

∂2!u

∂t2
+ · · · = !F(x) , (3.6.37)

where the vector force density depends on the vector field !u(x) and its derivatives (in a
gradient expansion) around the point x.

Let us focus on the Taylor expansion of the force !F(x) for small distortions !u(x), say in
the relevant case of a solid or gel in three dimensions. We can followi the procedure described
in Sec. 3.4.1, and employing the constrains of locality and uniformity construct a gradient
expansion for the vectorial force field. The mathematical consequence of isotropy, however, is
more interesting: In dealing with scalar quantities the contraction of two gradient operators
lead to the term ∇2h, for vectorial quantities, one gradient can be contracted with the vector
field, resulting in a new contribution to the gradient expansion. In index notation, we thus
find

!Fα(x) = −Juα +K∂β∂βuα + L∂α∂βuβ + · · · ; (3.6.38)

in addition to the usual Laplacian– now for the vector field !u(!x), there is a contribution that
is the gradient of the divergence of the field– ∇(∇ · !u).

The dispersion relation governing the PDE of Eq. (3.6.37), with the force density in
Eq.(3.6.38) is obtained by considering the (vectorial) trial solution

uα(!x) ∝ .[e−iωt].[ei$k·$x]êα , (3.6.39)

with êα indicating the α-th component of a unit vector ê. Substituting the above form in
the equation leads to

[

−iηω − ρω2 + J
]

êα = −
[

Kk2δαβ + Lkαkβ
]

êβ ≡ −Kαβ êβ , (3.6.40)

with a matrix relation emerging from the mixed derivative ∂α∂β .
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While the wave-vector !k does introduce a particular direction, the matrix K still reflects
our assumption of isotropy; its eigenvectors are either parallel or orthogonal to !k. This leads
to two types of modes for the isotropic vector field:

• Longitudinal modes correspond to deformations parallel to the wave-vector, ê( ‖ !k,
with

Kαβ(ê()β = (K + L)k2(ê()α , (3.6.41)

since kβ(ê()β = k. The resulting dispersion relation is obtained as solution of the
polynomial equation

−iηω − ρω2 + J = −(K + L)k2 . (3.6.42)

For example, the wave-equation for η = J = 0 admits longitudinal frequencies ω( =
±
√

(K + L)k2/ρ, with wave-speed v( =
√

(K + L)/ρ.

• Transverse modes have deformations perpendicular to the wave-vector, with kβ(êt)β =
0, leading to

Kαβ(ê()β = Kk2(ê()α . (3.6.43)

While there is only one longitudinal direction for each !k, there are 2 (or (d − 1) in
d-dimensions) transverse directions. The resulting dispersion relation satisfies

−iηω − ρω2 + J = −Kk2 . (3.6.44)

Clearly the transverse modes of the wave-equation (with η = J = 0) have a different
wave-speed of vt =

√

K/ρ.

An isotropic elastic material (such as glass) admits both types of modes. A gas, however,
does not respond to shear deformations and cannot support longitudinal modes. Sound waves
are longitudinal pressure waves. The electromagnetic field in free space satisfies ∇ · !E = 0
and thus cannot have a component parallel to the wave-vector. The two polarizations of
electromagnetic wave are transverse to its travel direction.

Recap

• The divergence theorem relates the flux of a vector field !v through any closed surface
to the integral of the divergence of !v though the enclosed volume:

∫

volume V

dV div!v = −
∫

surface S

!v · !dS . (3.6.45)

• For a general coordinate system, the expressions for divergence of a vector field and
the Laplacian of a scalar field are given by

div!v = !∇ · !v =
1

| detJ|
∑

α

∂

∂yα

(

| detJ|
hα

vα

)

,

∇2f =
1

| detJ|
∑

α

∂

∂yα

(

| detJ|
h2
α

∂f

∂yα

)

. (3.6.46)
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• In spherical coordinates, the corresponding expressions are

∇2Φ =
1

r2
∂

∂r
(r2

∂Φ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

r2 sin2 θ

∂2Φ

∂φ2
,

!∇ · !v =
1

r2
∂

∂r

(

r2vr
)

+
1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ
∂φ

. (3.6.47)

• The isotropic vector field in d-dimensions admits one longitudinal mode parallel to the
wave-vector, and (d− 1) transverse modes perpendicular to it.
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