4.1.4 Poisson distribution

The classical example of a Poisson process is radioactive decay. Observing a piece of radioactive material over a time interval T shows that:

- The probability of one and only one event (decay) in the interval $[t, t+d t]$ is proportional to $d t$ as $d t \rightarrow 0$,
- The probabilities of events at different intervals are independent of each other.

The probability of observing exactly M decays in the interval T is given by the Poisson distribution. It is obtained as a limit of the binomial distribution by subdividing the interval into $N=T / d t \gg 1$ segments of size $d t$. In each segment, an event occurs with probability $p=\alpha d t$, and there is no event with probability $q=1-\alpha d t$. As the probability of more than one event in $d t$ is too small to consider, the process is equivalent to a binomial one. Using Eq. (4.1.10) the generating function for this process is obtained as

$$
\begin{equation*}
G(\lambda)=\left(p e^{\lambda}+q\right)^{n}=\lim _{d t \rightarrow 0}\left[1+\alpha d t\left(e^{\lambda}-1\right)\right]^{T / d t}=\exp \left[\alpha\left(e^{\lambda}-1\right) T\right] . \tag{4.1.13}
\end{equation*}
$$

The cumulants of the distribution are obtained from the expansion

$$
\begin{equation*}
\ln G(\lambda)=\alpha T\left(e^{\lambda}-1\right)=\alpha T \sum_{n=1}^{\infty} \frac{(\lambda)^{n}}{n!}, \quad \Longrightarrow \quad\left\langle M^{n}\right\rangle_{c}=\alpha T \tag{4.1.14}
\end{equation*}
$$

All cumulants have the same value, and the moments are obtained as

$$
\begin{equation*}
\langle M\rangle=(\alpha T), \quad\left\langle M^{2}\right\rangle=(\alpha T)^{2}+(\alpha T), \quad\left\langle M^{3}\right\rangle=(\alpha T)^{3}+3(\alpha T)^{2}+(\alpha T) . \tag{4.1.15}
\end{equation*}
$$

Using a similar limiting procedure on the binomial distribution leads to

$$
\begin{equation*}
p_{\alpha T}(M)=e^{-\alpha T} \frac{(\alpha T)^{M}}{M!} . \tag{4.1.16}
\end{equation*}
$$

Example: Assuming that stars are randomly distributed in the galaxy (clearly unjustified) with a density n, what is the probability that the nearest star is at a distance R ?

Since, the probability of finding a star in a small volume $d V$ is $n d V$, and they are assumed to be independent, the number of stars in a volume V is described by a Poisson process as in Eq. (4.1.16), with $\alpha=n$. The probability $p(R)$, of encountering the first star at a distance R is the product of the probabilities $p_{n V}(0)$, of finding zero stars in the volume $V=4 \pi R^{3} / 3$ around the origin, and $p_{n d V}(1)$, of finding one star in the shell of volume $d V=4 \pi R^{2} d R$ at a distance R. Both $p_{n V}(0)$ and $p_{n d V}(1)$ can be calculated from Eq. (4.1.16), and

$$
\begin{align*}
p(R) d R=p_{n V}(0) p_{n d V}(1) & =e^{-4 \pi R^{3} n / 3} e^{-4 \pi R^{2} n d R} 4 \pi R^{2} n d R, \\
\Longrightarrow \quad p(R) & =4 \pi R^{2} n \exp \left(-\frac{4 \pi}{3} R^{3} n\right) \tag{4.1.17}
\end{align*}
$$

