
4.1 Random Variable

4.1.1 Describing random change

While motion in the realm of macroscopic bodies is largely deterministic, in the realm of
microscopic motion, stochasticity is the rule. A prominent classical example is provided by
motion of colloids in a viscous fluid. A large stone drops in such a fluid falls with a uniform
(terminal) velocity set by the balance of the force of gravity and fluid friction. A micron-sized
particle in the fluid, however, if observed with a microscope, performs a jittery motion that
only on average moves in the direction of gravity. The Scottish botanist, Robert Brown, first
discussed these fluctuations in 1827. To discuss and analyze such Brownian motion a new
mathematical perspective is needed, based on the concept of probability, which is the topic
of the next part of this material.

The simplest example of a random variable is a coin toss that can come up head or tails.
More generally, a random variable may have a set of possible outcomes S ∈ {x1, x2, · · · , xn},
e.g. n = 6 for outcomes of throwing a dice. To various outcomes of the random variable, we
then assign probabilities, which must satisfy the following conditions:

• Positivity: pi ≥ 0, i.e. all probabilities must be real and non-negative.

• Additivity: Probabilities of independent outcomes is additive, e.g. the probability of
an even number in the throw of a dice is the sum of probabilities for obtaining 2, 4,
and 6.

• Normalization: p(S) = ∞, i.e. the random variable must have take one of the possible
set of outcomes.

In principle, there are two approaches to assigning probabilities:

• Objective probabilities are obtained experimentally from the relative frequency of the
occurrence of an outcome in many tests of the random variable. If the random process
is repeated N times, and the event A occurs NA times, then

p(A) = lim
N→∞

NA

N
.

For example, a series of N = 100, 200, 300 throws of a dice may result in N1 =
19, 30, 48 occurrences of 1. The ratios .19, .15, .16 provide an increasingly more
reliable estimate of the probability pdice({1}).

• Subjective probabilities provide a theoretical estimate based on the uncertainties related
to lack of precise knowledge of outcomes. For example, the assessment pdice({1}) = 1/6,
is based on the knowledge that there are six possible outcomes to a dice throw, and that
in the absence of any prior reason to believe that the dice is biased, all six are equally
likely. The consequences of such subjective assignments of probability have to be
checked against measurements, and they may need to be modified as more information
about the outcomes becomes available.


