4.1.3 Bionomial distribution

Consider a random variable with two outcomes A and B (e.g. a coin toss) of relative probabilities p_{A} and $p_{B}=1-p_{A}$. The probability that in N trials the event A occurs exactly N_{A} times (e.g. 5 heads in 12 coin tosses), is given by the binomial distribution

$$
\begin{equation*}
p_{N}\left(N_{A}\right)=\left(\frac{N!}{N_{A}!\left(N-N_{A}\right)!}\right) p_{A}^{N_{A}} p_{B}^{N-N_{A}} . \tag{4.1.8}
\end{equation*}
$$

The prefactor is just the coefficient obtained in the binomial expansion of $\left(p_{A}+p_{B}\right)^{N}$, and gives the number of possible orderings of N_{A} events A and $N_{B}=N-N_{A}$ events B.

The generating function for the binomial distribution is

$$
\begin{equation*}
G_{N}(\lambda)=\left\langle e^{\lambda N_{A}}\right\rangle=\sum_{N_{A}=0}^{N} \frac{N!}{N_{A}!\left(N-N_{A}\right)!} p_{A}^{N_{A}} p_{B}^{N-N_{A}} e^{\lambda N_{A}}=\left(p_{A} e^{\lambda}+p_{B}\right)^{N} \tag{4.1.9}
\end{equation*}
$$

The resulting cumulant generating function is

$$
\begin{equation*}
\ln G_{N}(\lambda)=N \ln \left(p_{A} e^{-i k}+p_{B}\right)=N \ln G_{1}(\lambda) \tag{4.1.10}
\end{equation*}
$$

where $\ln G_{1}(\lambda)$ is the cumulant generating function for a single step. Hence, the cumulants after N steps are simply N times the cumulants in a single step. In each step, the allowed values of N_{A} are 0 and 1 with respective probabilities p_{B} and p_{A}, leading to $\left\langle N_{A}^{\ell}\right\rangle=p_{A}$, for all ℓ. After N trials the first two cumulants are

$$
\begin{equation*}
\left\langle N_{A}\right\rangle_{c}=N p_{A} \quad, \quad\left\langle N_{A}^{2}\right\rangle_{c}=N\left(p_{A}-p_{A}^{2}\right)=N p_{A} p_{B} \tag{4.1.11}
\end{equation*}
$$

A measure of fluctuations around the mean is provided by the standard deviation, which is the square root of the variance. While the mean of the binomial distribution scales as N, its standard deviation only grows as \sqrt{N}. Hence, the relative uncertainty becomes smaller for large N.

The binomial distribution is straightforwardly generalized to a multinomial distribution, when the several outcomes $\{A, B, \cdots, M\}$ occur with probabilities $\left\{p_{A}, p_{B}, \cdots, p_{M}\right\}$. The probability of finding outcomes $\left\{N_{A}, N_{B}, \cdots, N_{M}\right\}$ in a total of $N=N_{A}+N_{B} \cdots+N_{M}$ trials is

$$
\begin{equation*}
p_{N}\left(\left\{N_{A}, N_{B}, \cdots, N_{M}\right\}\right)=\frac{N!}{N_{A}!N_{B}!\cdots N_{M}!} p_{A}^{N_{A}} p_{B}^{N_{B}} \cdots p_{M}^{N_{M}} \tag{4.1.12}
\end{equation*}
$$

